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Abstract

Consider the problem of solving a system of equations F (x) = 0, subject to ∥x∥2 = 1,
whereby F : Rd → Rn is a random nonlinear map. More precisely, F (x) = (F1(x), . . . , Fn(x))
where the Fi( · )’s are i.i.d. rotationally invariant Gaussian processes. We study this problem
under the proportional asymptotics n, d→ ∞, n/d→ α ∈ [0, 1) and establish results about the
existence of solutions and polynomial-time algorithms to find them.

First, we establish upper and lower bounds αUB, αLB on the threshold for existence of
solutions. Namely, if the number of equations per variable satisfies α < αLB, then the system
admits exact solutions with high probability, while for α > αUB, no solutions exist, even in an
approximate sense.

We then analyze several algorithms to find solutions: gradient descent, Hessian descent,
and a two-phase algorithm. In particular, for Hessian descent and the two-phase algorithm, we
characterize their thresholds αHD, αTP. Namely, for α < αHD (or α < αTP) the algorithm finds
an approximate solution with high probability, while for α > αHD (respectively α > αTP), it
does not.

Finally, we compare the theoretical predictions within this model to empirical results ob-
tained with structured systems of nonlinear equations.

1 Introduction

Given data (zi, yi) ∈ RD ×R, i ≤ n, and a function class F ⊆ {f : RD → R}, an interpolator of the
data in F is any function f ∈ F such that f(zi) = yi for all i ≤ n. Existence and construction of
interpolators are fundamental problems in pure and applied mathematics. For instance, Kirszbraun
(Lipschitz) extension theorem completely characterizes the existence of interpolators when F is the
class of L-Lipschitz functions.

Recently, existence and algorithmic construction of interpolators has attracted new attention
because of applications to machine learning [BHMM19, BLLT20, ZBH+21, BMR21]. In this setting,
the data is normally assumed to be random {(zi, yi)}i≤n ∼i.i.d. P, and the function class is paramet-
ric. Namely, there exists a parametric form f : RD × Rd → R such that F = {f( · ;x) : x ∈ Sd−1}.
Here Sd−1 is the unit sphere in d-dimensions and x is a vector of parameters that parametrizes the
function class. The condition x ∈ Sd−1 is a stylized version of typical constraints that are imposed
(either implicitly or explicitly) on the parameters’ vectors in these applications. The interpolation
problem then reduces to

Find x ∈ Sd−1 such that f(zi;x) = yi for all i ≤ n. (1)
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Here a parametric form f is fixed, and the pairs (zi, yi) are i.i.d. with common law P.
We can abstract away the parametric form and data, thus leading to the formulation adopted

in the present paper.

Find x ∈ Sd−1 such that Fi(x) = 0 for all i ≤ n. (2)

The original formulation is recovered by choosing the special case Fi( · ) = yi − f(zi; · ), i.e. by
selecting a special distribution of the functions Fi. Since above we assumed the data (zi, yi) to be
i.i.d., the Fi’s will be i.i.d. random functions Fi : Sd−1 → R. It is convenient to define the mapping
F : Rd → Rn via F (x) := (F1(x), . . . , Fn(x)).

In this paper, we study this problem under a simple distribution for the random functions Fi.
Namely, we assume the Fi’s to be i.i.d. centered Gaussian processes with

E
[
Fi(x

1)Fj(x
2)
]
= δijξ

(
⟨x1,x2⟩

)
. (3)

Assuming this specific covariance structure is equivalent to the following two assumptions: (i) Fi

and Fj are independent and identically distributed for i ̸= j; (ii) Fi is invariant (in distribution)
under rotations.

The fact that the covariance is positive semidefinite implies ξ(t) =
∑

k≥0 ξkt
k, with ξk ≥ 0

for all k [Sch42]. We will impose the random function F : x 7→ F (x) to be smooth, by imposing
ξ(1+ ε) <∞ for some ε > 0 (

∑
k≥0 ξkk

2ℓ+ε <∞ is sufficient for F ∈ Cℓ(Sd−1) by the Kolmogorov-
Centsov theorem).

This model is closely related to the mixed p-spin model from spin glass theory, and indeed,
each coordinate Fi is an independent copy of the so-called ‘mixed p-spin Hamiltonian’ [CS92, CS95,
Sub17b]. The case of multiple equations n ≍ d, with energy function ∥F (x)∥22/2 was recently
introduced by Urbani [Urb23, KU23] as a model for confluent tissues. In particular, [Urb23] derives
the phase diagram of this model using the replica method from spin glass physics. Our focus (and
approach) will be different from the one of these works. In [Sub23], one of the authors used the
second moment method to prove that, when ξ(0) = 0, the Hausdorff volume (or number) of solutions
concentrates provided n ≤ d− 1.

We will refer to the model defined above as the ‘Nonlinear random Equations Model’ (NEM).
The random function F is naturally extended to the unit ball Bd(1), by positing the same covariance
of Eq. (3). In particular, for a fixed x ∈ Rd, E[∥F (x)∥2] = nξ(∥x∥). We define the set of ε-
approximate solutions by

Soln,d(ε) :=
{
x ∈ Sd−1 : ∥F (x)∥22 ≤ nξ(1) · ε

}
. (4)

A number of natural questions arise within this model:

Q1 Do exact solutions exist with high probability, i.e. is Soln,d(0) non-empty?

Q2 Do approximate solution exist, i.e. is Soln,d(ε) non-empty for some ε > 0?

Q3 Can we find these solutions (either exact or approximate ones) in polynomial time?

Questions Q1 and Q2 can be addressed (albeit non-rigorously) using the replica method [Urb23].
Here we will focus on the problem of efficiently finding approximate solutions in the high-

dimensional limit n, d→ ∞, with n/d→ α ∈ [0, 1). Hence α is the asymptotic number of equations
per unknown. Since α < 1 the system of non-linear equations F (x) is overparametrized.

We present the following results, illustrated in Figure 1 which refers to the special case ξ(q) =
ξ0 + qp, p ∈ {3, 7, 11, 15}.
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Figure 1: Phase diagram for ξ(q) = ξ0 + qp, p ∈ {3, 7, 11, 15}. Upper (solid) and lower (dashed)
black lines are the upper and lower bounds on the threshold for existence of solutions αUB and
αLB obtained respectively by Gaussian comparison and second moment method. Red line: The
threshold αHD below which the Hessian descent algorithm finds solutions with high probability.
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Lower bound. We determine a lower bound threshold αLB = αLB(ξ) such that, if α < αLB then
with high probability the system admits exact solutions. Namely, for α < αLB, Soln,d(0) ̸= ∅
with probability converging to one as n, d→ ∞, with n/d→ α. The lower bound is based on
a second-moment calculation.

In the examples of Figure 1, this lower bound is traced as the dashed black line.

Upper bound. We determine an upper bound threshold αUB = αUB(ξ) such that, if α > αUB

then with high probability the system does not admit approximate solutions. Namely, for
any α > αUB there exists ε > 0 such that Soln,d(ε) = ∅ with probability converging to one as
n, d→ ∞, with n/d→ α. Our upper bound is proved using Gaussian comparison inequalities.

In Figure 1, this corresponds to the upper continuous black line.

Gradient descent. We formulate the problem of finding a solution as an optimization problem,
with cost function H(x) := ∥F (x)∥22/2. We analyze gradient descent with respect to this cost,
and establish a lower bound αGD = αGD(ξ) such that, for α < αGD, gradient flow converges to
an exact solution.

Our analysis of gradient descent uses techniques recently developed to analyze overparametrized
neural networks [DZPS18, COB19, BMR21]. Because of its ubiquity, this approach provides a
useful benchmark for the more precise analysis outlined below (which yields better guarantees
in terms of overparametrization ratio α.)

Hessian descent. We introduce an Hessian descent algorithm, that instead of optimizing the first
order approximation to the cost function H(x), follows the best direction according to its Hes-
sian. For this case, we characterize precisely its threshold αHD(ξ). For α < αHD the algorithm
converges to an ε-approximate solution, with ε arbitrarily small, with high probability (with
respect to the random realization of F ). For α > αHD it only converges to an ε0-approximate
solution for some ε0(α) bounded away from 0. The threshold αHD is reported as a red line in
Figure 1.

For a broad set of random Gaussian functions F , the guarantee we obtain for Hessian descent
are significantly superior to the more standard ones for gradient descent.

Two-phase algorithm. In general the Hessian descent algorithm is not optimal because it disre-
gards almost entirely gradient information. In particular, it is not optimal when ξ′(0) ̸= 0
(and hence ∇H(0) is bounded away from 0). This is related to the fact that the set of solution
is not centered around 0 in this case. We describe a two-phase algorithm that is well suited
to these cases. In a first phase we use approximate message passing (AMP) to construct a
point m∗ ∈ Bd(1), with ∇H(m∗) ≈ cm∗. In the second phase we run Hessian descent in the
hyperplane orthogonal to m∗.

We characterize the threshold αTP below which the two-phase algorithm finds an approximate
solution.

By comparing the second moment lower bound on the existence of solutions, and the analysis of
various efficient algorithms, we identify regimes in which solutions exist with high probability, but
we do not now of any polynomial-time algorithm to find them. Further, we expect the two-phase
algorithm to be essentially optimal among polynomial-time algorithms. We will provide evidence
towards this expectation in a forthcoming publication [MS23a].

The five set of results outlined above are presented, respectively, in Sections 2.1, 2.2, 3, 4, 5.
Finally, Section 6 discusses, on the basis of numerical simulations, possible generalizations of the
present work to other probabilistic models for the equations Fi.
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Definitions and notations

The Gaussian random function F : Rd → Rn defined in the previous section can be constructed
explicitly by setting

Fi(x) :=
∑
k≥0

√
ξk

d∑
j1,...,jk=1

G
(k)
i,j1...jk

xj1 · · ·xjk (5)

=
√
ξ0G

(0)
i +

√
ξ1

d∑
j=1

G
(1)
i,j xj + . . . ,

where the random coefficients (G(k))k≥0 := (G
(k)
i,j1...jk

)k≥0,i≤n,j1,...,jk≤d ∼i.i.d. N(0, 1) are i.i.d. Gaus-
sian random variables. The relation with the previous definition is given by the coefficients ξk.

Given a symmetric matrix A ∈ Rn×n, we denote by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) its
eigenvalues in decreasing order. For a general matrix M ∈ Rm×n, m ≤ n, σ1(M) ≥ σ2(M) ≥ · · · ≥
σm(M) ≥ 0 denote its singular values and ∥M∥op its operator norm.

We let Bd(r) := {x ∈ Rd : ∥x∥ ≤ r} denote the ball of radius r in Rd, with Bd := Br(1).
Throughout, we will write W ∼ GOE(N) if W = W T and (Wij)i≤j≤N are independent with

Wii ∼ N(0, 2), Wij ∼ N(0, 1) for i < j. We write Z ∼ GOE(M,N) if (Zij)i≤M,j≤N are independent
with Zij ∼ N(0, 1).

2 Existence of solutions

In this section we derive upper and lower bounds for the maximum number of equations per variable
α, below which solutions do exist. The lower bound αLB (Section 2.1) is based on the second
moment method and guarantees the existence of exact solutions for α < αLB. The upper bound αUB

(Section 2.2) is based on Gaussian comparison inequalities and implies instead that even approximate
solutions do not exist for α > αUB.

It will be useful to keep in mind the following elementary fact that often allows us to focus on
Eminx∈Sd−1 ∥F (x)∥2.

Remark 2.1. For each i ≤ n, and each x ∈ Sd−1 the function (G
(k)
i,j1,...,jk

) 7→ Fi(x) is Lipschitz
continuous (in ℓ2), with Lipschitz norm bounded by

√
ξ(1) (recall that ξ(1) =

∑
k ξk). As a

consequence (G
(k)
i,j1,...,jk

) 7→ minx∈Sd−1 ∥F (x)∥2/
√
n is also Lipschitz hence it concentrates:

P
(∣∣ min

x∈Sd−1
∥F (x)∥2 − E min

x∈Sd−1
∥F (x)∥2

∣∣ ≥ t
)
≤ 2 e−t2/(cn) . (6)

2.1 Lower bound

Theorem 1. Assume ξ′(0) = ξ′′(0) = 0 and define Ψ( · ;α, ξ) : [0, 1] → R via

Ψ(r;α, ξ) :=
1

2
log(1− r2)− α

2
log

(
1−

(ξ(r)− ξ(0)

ξ(1)− ξ(0)

)2)
− αξ(0)

ξ(1) + ξ(r)− 2ξ(0)
+

αξ(0)

ξ(1)− ξ(0)
.

(7)

Further define

αLB(ξ) := inf
{
α ≥ 0 : sup

r∈[0,1]
Ψ(r;α, ξ) > 0

}
. (8)
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If α < αLB(ξ) then Soln,d(0) ̸= ∅ with probability converging to one as n, d → ∞ with n/d → α ∈
(0, 1).

Proof technique. The proof of this result is based on the second moment method. Namely, let
F>0(x) := F (x) − F (0), and note that F>0( · ) is independent of F (0) ∼ N(0, ξ(0)In) and dis-
tributed as the original process, with ξ(q) replaced by ξ>0(q) = ξ(q)− ξ(0).

Consider the modified set of solutions

Soln,d(u; ε) :=
{
x ∈ Sd−1 : ∥F>0(x)− u∥22 ≤ nξ(1) · ε

}
. (9)

We prove that, for α < αLB and δd ≥ 0 any deterministic sequence such that δd → 0, we have

lim
n,d→∞

sup
∥u∥2/

√
n∈[ξ1/20 −δd,ξ

1/2
0 +δd]

P(Soln,d(u; 0) = ∅) = 0 . (10)

This of course implies the claim of the theorem since ∥F (0)∥2/
√
n concentrates around ξ1/20 .

In order to upper bound the probability of Soln,d(u; 0) = ∅, as per Eq. (10), we introduce the
random variable

V(u) := Vold−n−1

(
Soln,d(u; 0)) , (11)

where Voli is the Hausdorff measure of dimension i, or the counting measure when i = 0.
We use Kac-Rice formula [Kac43, Ric45] to compute the first two moments of V(u) and obtain,

by a second moment argument, a sufficient condition for it to concentrate around the mean. For
u = 0 this calculation was carried out in [Sub23]. Here we generalize the argument to the case
u ̸= 0. We present this calculation in Appendix B.

In the case ξ(t) = ξ0 + tp (writing, with an abuse of notation, αLB(ξ0, p) instead of αLB(ξ)), we
have the large-p asymptotics (cf. Appendix C)

αLB(ξ0, p) =
log p

ξ0
·
(
1 + op(1)

)
. (12)

(This should be interpreted as αLB(ξ0 = γ0 log p, p) = γ−1
0 (1 + op(1)) for any γ0 > 1.)

2.2 Upper bound

We will prove two upper bounds α(1)
UB and α

(2)
UB on the satisfiability threshold. The first one holds

for general ξ and has the advantage of being quite simple, while we prove the second only for the
‘pure’ model ξ(q) = ξ0 + qp.

Define
E⋆(ξ) := lim

d→∞

1√
d
E max

x∈Sd−1
F1(x) . (13)

The limit is known to exist and is given by the Parisi formula [AC17, JT17], which we recall below.
Given γ : [0, 1) → R≥0 and L ≥

∫ 1
0 γ(s)ds, we define

P(γ, L) =
1

2

∫ 1

0

(
ξ′′(t)Γ(t) +

1

Γ(t)

)
dt , (14)

Γ(t) := L−
∫ t

0
γ(s)ds . (15)
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Equivalently, we can view P as a function of Γ : [0, 1] → R≥0 which is continuous and non-increasing.
We then have

E⋆(ξ) := inf
{
P(γ, L) : γ non-decreasing L ≥

∫ 1

0
γ(t) dt

}
. (16)

Proposition 2.1. Assume that ξ(0) > 0 and define ξ>0(t) := ξ(t)− ξ(0) and

α
(1)
UB(ξ) :=

E⋆(ξ>0)
2

ξ(0)
. (17)

If α > α
(1)
UB then there exists ε > 0 such that, for n/d→ α:

lim
n,d→∞

P
(
Soln,d(ε) = ∅

)
= 1 .

In fact this holds for any ε < ε0 := (ξ(0)/ξ(1))(1−
√
α
(1)
UB/α)

2
+.

Proof. As in the previous section, we write F (x) = F (0)+F>0(x) and note that the two summands
are independent. By Remark 2.1 (applied to F>0) and Eq. (13)

p-lim
n,d→∞

1√
d

max
x∈Sd−1

∣∣∣∣⟨F (0),F>0(x)⟩
∥F (0)∥2

∣∣∣∣ = E⋆(ξ) . (18)

Therefore,

1√
n

min
x∈Sd−1

∥F (x)∥2 ≥
1√
n
∥F (0)∥2 −

1√
n

max
x∈Sd−1

∣∣∣∣⟨F (0),F>0(x)⟩
∥F (0)∥2

∣∣∣∣ (19)

≥
√
ξ(0)− 1√

α
E⋆(ξ)− oP (1) , (20)

where oP (1) denotes a term which converges in probability to 0 as n, d → ∞, which implies the
claim.

We next obtain a bound for pure models ξ(t) = ξ0 + tp. For E ≥ 2
√

(p− 1)/p, define

Θp(E) :=
1

2
log(p− 1)− p− 2

p− 1

E2

4
−
√

p

p− 1

E

4

√
p

p− 1
E2 − 4+ log

(√ p

p− 1

E2

4
− 1+

√
p

p− 1

E

2

)
.

The meaning of this function is established in [CS95] (at a heuristic level) and in [ABA13, Auf13,
Sub17a, SZ21] (rigorously), and it is worth reminding it here. Consider the process F>0,1( · )
(the first coordinate of F>0(x) = F (x) − F (0)), which is a Gaussian process with covariance
E[F>0,1(x

1)F>0,1(x
2)] = ⟨x1,x2⟩p. Then, the number of local maxima x of this process with

F>0,1(x) ≈ E
√
d concentrates around exp(dΘp(E)). In particular, the function E 7→ Θp(E) is

monotone decreasing for E > 2
√

(p− 1)/p and vanishes at E = E⋆(ξ(t) = tp). With an abuse of
notation, we will write E⋆(p) = E⋆(ξ(t) = tp).

For c ≥ 0, define

φ1(c, p) = sup
t,s≥0

{
c(E⋆(p) + t+ s)− 1

2

s2

ξ(0)
+ Θp(E⋆(p) + t)

}
,

φ2(c, α) = sup
0<t≤1

{
− c
√
αξ(1)t− α

t2 − 1

2
+ α log t

}
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= −c
√
αξ(1)t∗ − α

t2∗ − 1

2
+ α log t∗,

where t∗ = 1
2(
√
c2ξ(1)/α+ 4− c

√
ξ(1)/

√
α). Note that φ2(c, α) is decreasing in α > 0.

Theorem 2. Define

α
(2)
UB(ξ0, p) := inf

{
α ≥ 0 : inf

c>0

[
φ1(c, p) + φ2(c, α)−

1

2
c2(1 + ξ0)

]
< 0
}
.

For the pure model ξ(q) = ξ0 + qp with p ≥ 2, if α > α
(2)
UB(ξ0, p), then there exists ε > 0 such that

lim
n,d→∞

P
(
Soln,d(ε) = ∅

)
= 1 .

The proof of this result is presented in Appendix D.

3 Gradient descent

In this section we study the classical projected gradient descent algorithm on the sphere Sd−1. We
use the cost function H(x) = ∥F (x)∥22/2. This algorithm can be thought of as a discretization of
the gradient flow dynamics

ẋ(t) = −PT,x(t)∇H(x(t)) , (21)

where PT,x is the projection onto the tangent space to the sphere of radius ∥x∥2 at x, namely1

PT,x := Id −
xxT

∥x∥22
. (22)

Appendix E states results about gradient flow as well.
In gradient descent, at iteration k we take a step along the direction −PT,xk∇H(xk), with

stepsize η, and then project back on the sphere Sd−1. The algorithm, is defined by the pseudocode
of Algorithm 1.

Algorithm 1: Projected Gradient Descent

Data: Couplings {G(k)}k≥0, stepsize η, number of iterations K
Result: approximate optimizer x ∈ Sd−1

Initialize x0 ∼ Unif(Sd−1);
for k ∈ {0, . . . ,K − 1} do

zk+1 = xk − ηPT,xk∇H(xk);
xk+1 = zk+1/∥zk+1∥2;

end
return xK

Our analysis of this algorithm is based on a technique that became recently popular to analyze
overparametrized neural networks in the so called ‘neural tangent’ or ‘lazy’ regime. A few pointers
to this literature include [DZPS18, COB19, OS20, ADH+19, AZLL19, BMR21]. We deliberately

1In Eq. (21) we have ∥x∥2 = 1 but we define PT,x more generally for future reference. By convention, we set
v/∥v∥2 = 0 if v = 0.
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follow this type of analysis as it provides a useful comparison point for the sharper techniques in
the next sections.

Below, for x ∈ Sd−1, Ux is an orthonormal basis for Tx the orthogonal space to x. Further,
for x1,x2 ∈ Rd, define Ux1,x2 := Rx1,x2Ux1 , where Rx1,x2 is the rotation that keeps unchanged
the space orthogonal to x1, x2, and maps x1 to x2. Finally, let DF (x) ∈ Rn×d be the Jacobian of
F at x.

Lemma 3.1. Consider the Gradient Descent Algorithm 1, and fix ε0 ∈ (0, 1/2). Let λ0 :=
σmin(DF (x0)|T,x0), and Jn, Ln,Mn be given by

Jn := sup
x1 ̸=x2∈Bd(1+ε0)

∥DF (x1)−DF (x2)∥op

∥x1 − x2∥2
, (23)

Ln := sup
x1 ̸=x2∈Ω

∥DF (x1)Ux1 −DF (x2)Ux1,x2∥op

∥x1 − x2∥2
, (24)

Mn := sup
x∈Bd(1+ε0)

∥DF (x)∥op , (25)

and assume they satisfy

Ln∥F (x0)∥2 <
λ20
16
, (26)

Further assume the step size η to be such that

η ≤ min

{
ε0

maxx∈Sd−1 ∥PTDF (x)TF (x)
∥∥
2

;
1

M2
n

;
1

10
√
n(Mn + Jn)maxx∈Sd−1 ∥F (x)∥2

}
. (27)

Then, for all k ≥ 0

∥F (xk)∥22 ≤ ∥F (x0)∥22 e−λ2
0ηk/8 . (28)

The proof of this statement is presented in Appendix E.
By evaluating the conditions in this statement, we obtain the following.

Theorem 3. Consider the Gradient Descent Algorithm 1, with F the Gaussian process defined in
Section 1, and initialization x0 independent of F . Assume n, d→ ∞ with n/d→ α ∈ [0, 1). Define,
for c0 a sufficiently small absolute constant and

αGD(ξ) :=
c0ξ

′(1)2

ξ′′(1)ξ(1)
(
log(ξ′′′(1)/ξ′′(1)) ∨ 1

) . (29)

If α < αGD(ξ), and η < 1/(C1d) with C1 a suitable constant depending on ξ, then the following
happens with high probability. For all k ≥ 1,

∥F (xk)∥22 ≤ 2nξ(1) exp
(
− ξ′(1)η

16

(√
d−

√
n
)2 · k) . (30)

Again, we refer to Appendix E for a proof.
Considering our running example ξ(t) = ξ0 + tp, αGD(ξ) is equivalent, up to constants, to

αGD(ξ0, p) :=
c1

ξ0 log p
. (31)

It is instructive to compare this result with the lower bound on the threshold for existence of
solutions, see Eq. (12). Roughly speaking, for large p, and 1/ log pαξ0 ≪ log p we know that
solutions exist with high probability, but the approach developed here does not guarantee that we
can find them. We will see that this gap shrinks using the methods in next sections.
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4 Hessian descent

We next consider the Hessian descent algorithm first introduced in [Sub21] to optimize the spherical
spin glass Hamiltonian. We do not expect this algorithm to be optimal in general, and in particular
not so unless ξ′(0) = 0 (i.e. F (x) does not contain terms linear in x). In the next section we describe
an extension that covers this case as well, but we think it is useful to first introduce Hessian descent
in a simpler setting.

The Hessian descent algorithm presents two important differences with respect to gradient
descent. First, we extend the objective function H(x) to the unit ball Bd(1): iterates are initialized
at x0 = 0, and after k iterations we have ∥xk∥22 = kδ. Second, we disregard gradient information
at xk and instead optimize the Hessian contribution to the cost function H(x).

The pseudocode for Hessian descent is specified in Algorithm 2 below.

Algorithm 2: Hessian Descent

Data: Couplings {G(k)}k≥0, stepsize δ, with 1/δ ∈ N
Result: Approximate optimizer xHD ∈ Sd−1

Initialize x0 = 0, x1 ∼
√
δ ·Unif(Sd−1);

for k ∈ {1, . . . ,K := 1/δ − 1} do
Compute v = v(xk) ∈ Txk such that ∥v∥2 = 1 and

⟨v,∇2H(xk)v⟩ ≤ λmin(∇2H(xk)|T,xk) + dδ ; (32)

sk := sign(⟨v(xk),∇H(xk)⟩);
xk+1 = xk − sk

√
δ v(xk);

end
return xHD = xK ;

The next theorem bounds the value achieved by the Hessian descent algorithm. (We formally
state an upper bound on the value achieved, but we expect the bound to be tight.)

Theorem 4. For α ∈ (0, 1), a, b ∈ R≥0, define

Q(m;α, a, b) := − 1

m
+

αb

1 + bm
− a2m, (33)

z∗(α, a, b) := − sup
m>0

Q(m;α, a, b) . (34)

Let u( · ;α, ξ) : [0, 1] → R be the unique solution of the ordinary differential equation

du

dt
(t) = − 1

2α
z∗
(
α;
√

2αu(t)ξ′′(t), ξ′(t)
)
, u(0) =

1

2
ξ(0) . (35)

Then there exists constants C0 = C0(α, ξ), δ0 = δ0(α, ξ) > 0 depending uniquely on α, ξ such that
the Hessian descent algorithm, with stepsize parameter δ ≤ δ0, outputs xHD ∈ Sd−1 such that, with
probability converging to one as n, d→ ∞ (n/d→ α)

1

2n

∥∥F (xHD)
∥∥2
2
≤ u(1;α, ξ) + C0δ . (36)

Further, the algorithm has complexity at most (C0χn,d/δ) log(1/δ), where χn,d is the complexity of
a single matrix vector multiplication by ∇2H(x) at a query point x ∈ Bd(1).
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The proof of this theorem is presented in Appendix F.

Remark 4.1. Theorem 4 implies that the Hessian descent algorithm achieves an approximate
solution (in the sense that p-limn,d→∞ ∥F (xHD)

∥∥2
2
/n = 0) provided α < αHD(ξ), where

αHD(ξ) := inf
{
α ≥ 0 : u(1;α, ξ) = 0

}
. (37)

Remark 4.2. The complexity χn,d of matrix-vector multiplication by ∇2H(x) at a query point x
depends on the details of the computation model in use. In a model in which sums and products
in R can be carried out in O(1) time, if ξk = 0 for all k > kmax (i.e. F is a polynomial), then
χn,d = O(dkmax).

If ξk ̸= 0 for infinitely many k (i.e. F is not a polynomial), we can truncate it at a large
level kmax, and hence approximate matrix-vector multiplication by using the truncated Hessian.
Similarly, if only integer operations are allowed, we can use finite-precision approximations of the
entries of ∇2H(x). It is easy to show that these modifications do not change the claim of Theorem
4.

It is clear that establishing Theorem 4 requires to analyze the eigen-structure of the Hessian
∇2H(x) at a point x ∈ Rd. In particular, the following simple lemma characterizes the joint
distribution of H(x), ∇H(x), ∇2H(x). In synthesis, the restriction of the Hessian on the tangent
space is a linear combination of a Wigner and an independent Wishart matrix, with coefficients
that depend on the energy level.

Lemma 4.1. For a fixed x ∈ Rd with ∥x∥22 = q, we have F (x) =
√
ξ(q) g, DF (x)Ux =

√
ξ′(q)Z,

UT
x∇2Fℓ(x)Ux =

√
ξ′′(q)W ℓ, where g, (W ℓ)ℓ≤n,Z are mutually independent with

g ∼ N(0, In) , W ℓ ∼ GOE(d− 1) , Z ∼ GOE(n, d− 1) . (38)

As a consequence, letting H(x) := UT
x∇2H(x)Ux be the restriction of the Hessian to the tangent

space, we have

H(x) =
√
ξ(q)ξ′′(q) ∥g∥2W + ξ′(q)ZTZ , (39)

H(x) =
1

2
ξ(q)∥g∥22 , (40)

where (g,W ,Z) ∼ N(0, In)⊗ GOE(d− 1)⊗ GOE(n, d− 1).

This lemma suggests to estimate the energy decrease at step k of Hessian descent, by computing
the minimum eigenvalue of λmin(H(x)) at a point x with ∥x∥22 = kδ and H(x)/n = u. If x is a
point independent of the Gaussian process F ( · ), λmin(H(x)) turns out to concentrate around
−z#(t = kδ)d where z#(t) := z∗(α;

√
2αuξ′′(t), ξ′(t)). By summing this energy decrement over

k ∈ {, . . . , ⌊1/δ⌋ − 1} and letting δ be small, this calculation yields the value u(1;α, ξ) of Theorem
4.

At first sight, such a derivation might seem incorrect because xk is not independent of H(xk).
However, the fast decay of the probability of upper deviations of the minimum eigenvalue allows to
establish the claim nevertheless.

Remark 4.3 (Algorithm complexity). Recall that λ1(A) ≥ λ2(A) ≥ · · · denote the eigenvalues of
A in decreasing order. Then the proof of Theorem 4 outlined above (together with the fact that
the matrix H(x) of Eq. (39) has with high probability c0ε3/2 · d eigenvalues in [−z#d, (−z# + ε)d])
implies that condition (32) can be replaced by

⟨v,∇2H(xk)v⟩ ≤ (−z#(kδ) + c∗δ)d , (41)
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which is essentially equivalent. Such a vector v can be computed with O(log(1/δ)) matrix vector
multiplications by ∇2H(xk)|T,xk , via Chebyshev approximation [Saa11]. Also notice that computing
λmin(∇2H(xk)|T,xk) is not needed.

Summing up, the total complexity of one step Hessian descent algorithm is O(log(1/δ)) matrix
vector multiplications by the Hessian.

The formula u(1;α, ξ) for the energy achieved by Hessian descent, cf. Theorem 4, is somewhat
implicit. The next corollary provides user-friendly upper and lower bounds. Its proof follows
immediately from Theorem 4 using the bounds on z∗ given in Lemma F.1, part 3.

Corollary 4.2. Define

uLB(α, ξ) :=
1

2

(√
ξ(0)−

√
1

α

∫ 1

0

√
ξ′′(s)

)2

+

, (42)

uUB(α, ξ) :=
1

2

(√
ξ(0)−

√
1− α

α

∫ 1

0

√
ξ′′(s)

)2

+

. (43)

Then the energy achieved by Hessian descent satisfies

uLB(α, ξ) ≤ p-lim
d,n→∞

1

2n

∥∥F (xHD)
∥∥2
2
≤ uUB(α, ξ) . (44)

In particular, the critical point of the algorithm satisfies

A(ξ)

1 +A(ξ)
≤ αHD(ξ) ≤ A(ξ) , A(ξ) :=

(∫ 1

0

√
ξ′′(t)

ξ(0)
dt

)2

. (45)

For our running example of a pure model ξ(t) = ξ0 + tp (denoting the corresponding threshold
by αHD(ξ0, p)), the last bounds yields

4(p− 1)

pξ0 + 4(p− 1)
≤ αHD(ξ0, p) ≤

4(p− 1)

pξ0
. (46)

In particular, for large p, we obtain αHD(ξ0, p) ≥ (4/(4 + ξ0))(1 + op(1)). This is substantially
better than the guarantee αGD(ξ0, p) ≍ 1/(ξ0 log p) that we obtained in the previous section for
gradient descent, but still far from the maximum value of α in which we know that solutions exist,
α < αLB(ξ0, p) ≍ (log p)/ξ0, cf. Eq. (12).

5 Two-phase algorithm

By analogy with the case of the spherical p-spin glass model [Sub21], we expect Hessian descent to
be optimal (among algorithms with comparable complexity) if ξ′(0) = 0. On the other hand, it is
easy to construct examples in which it is suboptimal if ξ′(0) ̸= 0, as discussed in the next remark.

Remark 5.1. Consider the case ξ(q) = ξ0 + q. Namely F is a linear function F (x) =
√
ξ0h+Gx

for h ∈ Rn, G ∈ Rn×d with i.i.d. standard normal entries. In this case the Hessian of H(x) is always
positive semidefinite and Hessian descent does not yield any improvement over random guessing,
namely H(xHD)/n = ξ0/2 + oP (1).

12



On the other hand, it is simple to find a solution by linear algebra. More precisely, we can find
the minimum norm solution of Gx = −

√
ξ0h, namely x0 = −GT(GGT)−1

√
ξ0h and add a vector

in the null space of G of suitable length to get a solution of unit norm. A simple random matrix
calculation yields

∥x0∥22 =
ξ0α

1− α
+ oP (1) . (47)

We thus can efficiently construct a solution x∗ ∈ Sd−1 provided α < 1/(ξ0 + 1).

From the point of view of optimization, the reason for suboptimality is that Hessian descent
does not exploit gradient information in a neighborhood of x = 0. Spin-glass theory offers a more
refined picture. If ξ′(0) ̸= 0, the set of solutions of the system F (x) = 0 is centered at m∗, with
∥m∗∥2 bounded away from 0.

In order to find solutions in this situation, we proceed in two phases: (i) We first find a proxy
mL for m∗ using an approximate message passing (AMP) algorithm. (ii) We use the vector mL

as initialization for the next phase. We restrict to the hyperplane orthogonal to this vector and run
Hessian descent to optimize the energy H(x).

The AMP iteration in the first phase is defined by letting, for ℓ ≥ 0

hℓ+1 =
1√
n
F (mℓ)− γBℓh

ℓ−1 , (48)

mℓ+1 =
γ√
d
DF (mℓ)Thℓ − γCℓm

ℓ−1 − γ2Dℓm
ℓ−1 . (49)

with initialization

m0 = m−1 = h0 = 0 . (50)

Further, γ is a (non-random) constant to be fixed in the course of the proof and Bℓ, Cℓ, Dℓ are given
by

Bℓ :=
1√
α
ξ′
(
⟨mℓ,mℓ−1⟩

)
, (51)

Cℓ :=
√
α ξ′
(
⟨mℓ,mℓ−1⟩

)
, (52)

Dℓ := ξ′
(
⟨mℓ,mℓ−1⟩

)
⟨hℓ,hℓ−1⟩ . (53)

The pseudocode the algorithm is given in Algorithm 3.
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Algorithm 3: Two-Phase Algorithm

Data: Couplings {G(k)}0≤k≤kmax , iteration number L, stepsize δ, AMP parameter γ
Result: Approximate optimizer xTP ∈ Sd−1

Initialize m0 = m−1 = h−1 = 0;
for ℓ ∈ {0, . . . , L− 1} do

Compute hℓ, mℓ+1 via Eqs. (48), (49);
end
Set x0 = mL, VL := {x ∈ Rd : ⟨x,mL⟩ = 0};
Set K = (1− ∥mL∥2)/δ;
for k ∈ {0, . . . ,K − 1} do

Compute v = v(xk) ∈ Txk ∩ VL such that ∥v∥2 = 1 and

⟨v,∇2H(xk)v⟩ ≤ λmin(∇2H(xk)|T
xk∩VL

) + dδ ;

Set sk := sign(⟨v(xk),∇H(xk)⟩);
xk+1 = xk − sk

√
δ v(xk);

end
return xTP = xK/∥xK∥2;

We begin by stating a theorem that characterizes the first phase of the algorithm.

Theorem 5. Assume ξ(0), ξ′(0) > 0, α ∈ (0, 1). Let qRS(ξ) := argminq>0[ξ(q)ξ
′(q)/q] and q0(α) =

q0(α, ξ) to be the unique positive solution of α = qξ′(q)/ξ(q). For q ∈ (0, qRS(ξ)), define γ∗(q, α, ξ)
via

γ∗(q, α, ξ) = −
√

q

ξ(q)ξ′(q)
, q := q ∧ q0(α) . (54)

(If ξ(t) = ξ0 + ξ1t we set qRS(ξ) = ∞.)
Then the first phase of Algorithm 3, with input parameter γ = γ∗(q, α, ξ), outputs mL such that∣∣∣ p-lim

n,d→∞

1

d

∥∥mL
∥∥2 − q ∧ q0(α)

∣∣∣ ≤ Ce−L/C , (55)∣∣∣ p-lim
n,d→∞

1

2n

∥∥F (mL)
∥∥2 − uRS(q, α, ξ)

∣∣∣ ≤ Ce−L/C , (56)

uRS(q, α, ξ) :=
1

2

(√
ξ(q)−

√
1

α
qξ′(q)

)2
+
. (57)

Note that for our problem statement, we should choose q ∈ (0, qRS(ξ) ∧ 1). However, the
statement above makes sense and holds also for q ≥ 1.

Remark 5.2. Note that q 7→ V (q) := ξ(q)ξ′(q)/q is strictly convex on (0, qmax) with qmax the
maximum radius of convergence of ξ (see Appendix G), hence qRS(ξ) is well defined, with qRS(ξ) = ∞
if and only if ξ is linear. Further q 7→ g(q) := qξ′(q)/ξ(q) is strictly increasing with g(0) = 0,
limq→∞ g(q) = ∞. Hence q0(α, ξ) is well defined as well. In general neither qRS(ξ) nor q0(α, ξ) need
to take values in [0, 1].

We use this result together with a generalization of the proof of Theorem 4 to prove the next
statement.
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Theorem 6. For α ∈ (0, 1), a, b ∈ R≥0, define z∗(α, a, b) as in Theorem 4. Further, define qRS(ξ),
q0(α, ξ), γ∗(q, α, ξ) as in Theorem 5 and set q∗ := qRS(ξ)∧ q0(α, ξ). Assume q∗ < 1 (see Remark 5.3
for the case q∗ ≥ 1.)

Let u( · ;α, ξ, q) : [0, 1− q] → R be the unique solution of the ordinary differential equation

du

dt
(t) = − 1

2α
z∗
(
α;
√
2αu(t)ξ′′(q + t), ξ′(q + t)

)
, u(0) = uRS(q, α, ξ) . (58)

Then for any ε > 0, there exists a constant δ0 = δ0(ε, α, ξ) > 0 depending uniquely on α, ξ such that
the two phase algorithm, with stepsize parameter δ ≤ δ0 and γ = γ∗(q∗−δ0, α, ξ) outputs xTP ∈ Sd−1

such that

p-lim
d,n→∞

1

2n

∥∥F (xTP)
∥∥2
2
≤ u(1− q∗;α, ξ, q∗) + ε . (59)

Further the algorithm has the complexity of C(δ) matrix vector multiplications by ∇2H and DF .

The proofs of this theorem and of Theorem 5 are presented in Appendix G.

Remark 5.3. Theorem 6 only covers the case q∗ < 1.
If q∗ ≥ 1, the first phase of the algorithm (with input parameter γ = γ∗(q = 1, α, ξ)) achieves,

by Theorem 5

p-lim
n,d→∞

1

2n

∥∥F (mL)
∥∥2 = 1

2

(√
ξ(1)−

√
1

α
2ξ′(1)

)2
+
+O(e−L/C) . (60)

We expect this value cannot be improved cannot be improved by other choices of the algorithm
parameters.

6 Interpolating random data: An empirical comparison

Throughout the paper, we studied the problem of solving the system of nonlinear equations F (W ) =
0 with respect to unknowns W ∈ Sd−1, when F is a Gaussian process. (Throughout this section,
the unknowns will be denoted by W to match the applied literature.)

It is natural to wonder whether the theory developed in this setting can provide any guidance
towards understanding more complex cases in which the functions F1, . . . , Fn are random but non-
Gaussian.

In this section we consider the interpolation problem introduced in Section 1 and describe a
simulation study comparing the Gaussian theory of the previous section to empirical results. More
precisely, we consider the problem of interpolating random data (yi, zi) ∈ {+1,−1} × RD using a
two-layer neural network with weights W .

The setup for these simulations is defined in Section 6.1. Section 6.2 investigates the robust-
ness of our results with respect to various choices in the simulations. Finally, in Section 6.3 we
compare empirical results in the interpolation problem with the Gaussian theory of the previous
sections. Namely, we compare empirical results with theoretical ones within a Gaussian model that
approximately matches the covariance structure of the interpolation model.

In general, we observe a gap between the Gaussian theory and the neural network model.
However, the two appear to be in rough qualitative agreement and, in certain cases, surprisingly
close to each other.
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6.1 Setup and definitions

We are interested in the ability of large neural networks to interpolate completely unstructured
(pure noise) data, a phenomenon that has attracted considerable attention over the last few years
[ZBH+21, BHMM19, BMR21]. In order to capture the essence of this problem in a simple setting, we
assume to be given i.i.d. data {(yi, zi)}i≤n with yi ∼ Unif({+1,−1}) independent of zi ∼ N(0, ID).
We consider a two-layer neural network with D inputs and m hidden units:

f(z;W ) =
a√
m

m∑
j=1

si σ(⟨wj , z⟩) . (61)

Here a ∈ R>0 is a scale parameter that will be fixed independently of the data. The signs
s1, . . . , sm ∈ {+1,−1} are also fixed (independent of the data) and uniformly random subject
to #{i ∈ [m] : si = +1} = #{i ∈ [m] : si = −1} = m/2 (for simplicity we assume m even). The
weights W = (w1, . . . ,wm)T ∈ Rm×D, are instead fit to the data as to minimize the empirical risk

R̂n(W ) :=
1

2n

n∑
i=1

(
yi − f(zi;W )

)2
, (62)

subject to the norm constraints

∥W ∥2F =
m∑
i=1

∥wi∥22 ≤ m. (63)

Note that n · R̂n(W ) is nothing but the Hamiltonian H(x) = ∥F (x)∥22/2 of the previous pages,
with the replacement x = W /

√
m and Fi(x) = yi − f(zi;W ). We thus identify the dimension of

the optimization problem as d = mD.
We attempt to minimize the cost R̂n(W ) using stochastic gradient descent (SGD). Below are

some specifics of our experiments.

Activation function. We use the standard ELU activation:

σ(x) =

{
x if x ≥ 0,
ex − 1 if x < 0.

(64)

Optimization algorithm. We use SGD with batch size |B(k)| = 4:

W̃
k+1

= W k − ηk
2

∑
i∈B(k)

∇w

(
yi − f(zi;W

k)
)2
, (65)

W k+1 =
(
1 ∧

√
m

∥W̃ k+1∥F

)
W̃

k+1
, (66)

and stepsize ηk = lr/(1 + E(k))1/2, where E(k) is the epoch index. We will vary the learning rate
lr and number of epochs.

In order to satisfy the ℓ2 constraint (63), we project back onto this set at each iteration, as per
Eq. (66).

Initialization. We initialize the weights to W ∼ N(0, ε2ImD/D), and use ε = 0.03 in simulations.
This corresponds to initializing close to the center of the ball (63), since ∥W ∥F /

√
m = ε+ oP (1).
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Figure 2: Fitting random binary labels using a 2-layer ELU network (61), using SGD and weights
bounded as per Eq. (63), as a function of the number of samples per parameter n/(mD). Left:
Dependence of training error on the number of epochs Nit. Right: Dependence on the learning rate
lr.
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Figure 3: Same as in Fig. 2. Training error as a function of the number of samples per parameter
n/(mD). Here we vary the input dimension D and number of neurons m.
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6.2 Dependence on the simulations parameters

In Figures 2, 3 we investigated the dependence of training error (energy) achieved over various
parameters of the model and training algorithm. All of these figures are obtained by setting a = 1,
and report the average training error over 20 realizations of the data, and independent runs of the
algorithm. When present, bands represent an interval of plus/minus one standard deviation over
these 20 realizations.

In more detail, we consider the following settings:

• Figure 2, left frame: we use m = D = 20, lr = 0.1, and increase the number of epochs Nit
from 1000 to 4000.

• Figure 2, right frame: we use m = D = 20, Nit = 2000, and vary the learning rate lr between
0.05 and 0.20.

Our theory does not capture dependence on learning rate or number of iterations. In this respect,
the empirical observation that this dependence is mild in the current setting is reassuring.

Next, the Gaussian theory only depends on the ratio α = n/d, where d is the number of decision
variables. In the current setting d = mD, and is therefore interesting to investigate the dependence
on m,D while keeping α = n/(mD) fixed:

• In Figure 3 we use lr = 0.1, Nit = 4000, and vary the number of neurons m and input
dimension D.

We observe that the training error achieved does depend on the architecture, and most noticeably
on the ‘aspect ratio’ m/D. On the other hand, this dependence is not as dramatic as one might
expect. A fourfold increase in aspect ratio only changes the training error by 20%.

6.3 Comparison with Gaussian theory

We next compare simulation results with the analytical prediction for a Gaussian model with match-
ing covariance (see Section 6.4 for a description of this prediction). More precisely we compute the
prediction for the two-phase algorithms of Theorem 6. We expect this to correspond to the optimal
energy achieved (asymptotically as n, d→ ∞) by a broad class of efficient algorithms. Hence should
provide an upper bound on the energy achieved by SGD (and an upper bound on the threshold.)

In Figure 4 we consider number of neurons m = 20, and input dimension D = 20, and vary
Nit, lr as indicated in legends. We change a ∈ {1, 2, 5}, which of course impacts the Gaussian
prediction. The agreement is surprisingly good for a = 1, and worsens for a ∈ {2, 5}. Despite
the worse agreement for a ≳ 2, the Gaussian theory still has the correct qualitative behavior, and
appears to be a good starting point to analyze the more complex model (61).

6.4 Covariance matching

We conclude this section by discussing the “covariance matching” used in to compute the theoretical
predictions in Fig. 4. We begin by observing that, in general, we cannot expect the Gaussian model
to capture the behavior of the system of nonlinear equations yi−f(zi;W ) = 0, with f( · ;W ) given
by Eq. (61).

To see this, consider the case of a linear activation σ(x) = x. Then the system of equations
reads ( a√

m

m∑
j=1

sj wj

)T
zi = yi ∀i ≤ n . (67)
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Figure 4: Training error od SGD as a function of the number of samples per parameter α = n/(mD).
From top to bottom: a ∈ {1, 2, 5}. Red lines report the theoretical prediction of Theorem 6 for the
optimal ‘two-phase’ algorithm.
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In other words, the model depends on the weight vectors only through the D-dimensional projection
u := am−1/2

∑m
j=1 sj wj . In particular, a solution exists if and only if D ≥ n (for generic data

(zi)i≤n), and the total number of parameters is irrelevant.
In order to take into account the fact that the linear component of σ has a much smaller

number of degrees of freedom than in the corresponding Gaussian model, we project out the linear
component of activations before matching covariances. Namely, we define σ#(x) := σ(x) − σ1 · x,
where σ1 := EG∼N(0,1)[Gσ(G)] is the linear coefficient in the Hermite expansion of σ, and

f#(z;W ) =
a√
m

m∑
j=1

sj σ#(⟨wj , z⟩) , (68)

Fi(W ) := yi − f#(z;W ) . (69)

We now compute the covariance of the process Fi(w) with respect to the random data z. Letting
CF (W ;W ′) := Ezi,yi [Fi(W )Fi(W

′)], we have

CF (W ;W ′) = 1 + Ez

{
f#(z;W )f#(z;W

′)
}

(70)

= 1 +
a2

m

m∑
j,l=1

sjsl Ezσ#(⟨wj , z⟩)σ#(⟨w′
l, z⟩)

}
(71)

= 1 +
a2

m

m∑
j,k=1

sjsl K̂
(
⟨wj ,w

′
l⟩, ∥wj∥22, ∥w′

l∥22
)
, (72)

where we introduced the kernel K̂ defined by

K̂(r12, r11, r22) := E
[
σ#(G1)σ#(G2)

]
, (73)

(G1, G2) ∼ N(0,R) R :=

(
r11 r12
r12 r22

)
. (74)

We observe that the covariance (72) is not invariant under the orthogonal group O(mD) but only
under Sm/2⊗Sm/2⊗O(D) (with Sm/2 denoting the group of permutations in the space of neurons,
for neurons with same sj , and O(D) denoting rotations in the space of weights). In order to replace
it by an orthogonally invariant covariance (depending only on ⟨W ,W ′⟩), we make the following
approximations:

1. Since the signs (sj)j≤m in Eq. (72) are random, we keep only diagonal terms in the sum, and
thus replace CF (W ;W ′) by C(1)

F (W ;W ′) whereby

C
(1)
F (W ;W ′) = 1 +

a2

m

m∑
j=1

K̂
(
⟨wj ,w

′
j⟩, ∥wj∥22, ∥wj∥22

)
.

Notice that this is accurate at a fixed W , W ′ but not uniformly over W , W ′.

2. We approximate the value of C(1)
F (W ;W ′) by the one taken by C(1)

F (W ;W ′) for a ‘typical’
pair W , W ′ with a given inner product ⟨W ,W ′⟩. More formally define the set

Wm,n(q) :=
{
W ,W ′ ∈ Rm×D : ∥W ∥2F = m, ∥W ′∥2F = m, ⟨W ,W ′⟩ = mq

}
. (75)

If we draw (W ,W ′) ∼ Unif(Wm,n(q)), then for a fixed j ∈ [m], ∥wj∥2 = 1+ oP (1), ∥w′
j∥2 =

1 + oP (1) and ⟨wj ,w
′
j⟩ = q + oP (1). As a consequence, we will have

C
(1)
F (W ;W ′) = 1 + a2 K̂

(
q, 1, 1

)
+ oP (1) . (76)
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Summarizing, and simplifying notations, the above approximation suggests to use a Gaussian
process FG in d = mD dimensions with

E[FG
i (W )FG

j (W ′)] = ξ
(
⟨W ,W ′⟩/m

)
, (77)

ξ(q) := 1 + a2K0(q) := 1 + a2[K(q)− σ21q] , (78)

K(q) := E
[
σ(G1)σ(G2)

]
, (G1, G2) ∼ N

(
0,

(
1 q
q 1

))
. (79)

This is exactly the function ξ( · ) used to compare simulations and theory in the previous sections.
We conclude this section with a warning. We do not expect the theoretical predictions based

on the covariance matching here to be asymptotically exact as m,D, n → ∞. In particular, as
emphasized above, the actual covariance structure is not invariant under O(mD).

Nevertheless, the rough agreement between theory and empirical results suggests that the
Gaussian model (possibly with a more complex covariance structure) might be a useful starting
point.

7 Discussion

In this paper, presented some simple upper and lower bounds on the threshold for existence of
solutions of a set of overparametrized nonlinear equations F (x) = 0 when F : Sd−1 → Rn is a
smooth Gaussian process.

Our main focus was to analyze polynomial-time algorithms to construct approximate solutions,
i.e. x ∈ Sd−1 such that ∥F (x)∥22 ≤ εE{∥F (x0)∥22} (here x0 ∈ Sd−1 is uniformly random). In par-
ticular, we presented a two-phase algorithm which we expect to be near-optimal, and characterized
the value it achieves in Section 5. For cases in which DF (0) = 0 (i.e. ξ′(0) = 0), this algorithm
reduces to the Hessian descent algorithm of [Sub21].

As shown in Figure 1, there exist cases in which we know that solutions exist but we are not
able to find any in polynomial time.

These results naturally suggest a number of interesting questions. Among others: (i) Can
we provide evidence of hardness for cases in which the algorithms presented here fail? (ii) Can
we construct exact solutions? (iii) What happens when the system of equations is only modestly
overparametrized? (iv) Can we characterize sharply the conditions under which gradient flow finds
solutions?

We plan to report on questions (i)-(iii) in the near future [MS23a, MS23b].
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A Basic estimates

This appendix contains some basic estimates of the process (F (x))x∈Rd , which will be useful in the
following. Throughout (Fℓ)ℓ≥0 are i.i.d. Gaussian processes with E[Fℓ(x)Fℓ(y)] = ξ(⟨x,y⟩).

We begin by bounding the expected maximum. Notice that the limiting value of this quantity
is exactly given by Parisi’s formula, cf. Eq. (16). However, we find it convenient to derive some
explicit estimates.

Proposition A.1. There exist absolute constants C1, C2 such that (writing log+(t) := max(1, log t))

C1

√
ξ′(1)2

ξ(1)ξ′′(1)
log+

ξ′′(1)

ξ′(1)
≤ 1√

dξ(1)
E max

x∈Sd−1
F1(x) ≤ C2

√
log+

ξ′(1)

ξ(1)
. (80)

The same bounds hold if the maximum is taken over x ∈ Bd(1).

Proof. Given x,y ∈ Sd−1, we denote their Euclidean and rescaled canonical distances by r and u
respectively

r := ∥x− y∥2 =
√
2(1− ⟨x,y⟩) , (81)

u :=

√
1

ξ(1)
E
{[
F1(x)− F1(y)

]2}
=

√
2
(
1− ξ(⟨x,y⟩)

ξ(1)

)
. (82)

We denote by r(u) the (strictly increasing) function that maps u to r, namely the unique solution
of the equation

1− u2

2
=
ξ(1− r2/2)

ξ(1)
. (83)

Since ξ′(t) ≤ ξ′(1) on [0, 1],

ξ(1− r2/2)

ξ(1)
≥ 1− ξ′(1)

ξ(1)
· r

2

2
, (84)

whence

r(u) ≥

√
ξ(1)

ξ′(1)
u . (85)

Let Nd(r) ≤ [(10/r) ∨ 1]d (respectively, NF1
d (r)) be the covering number of Sd−1 w.r.t. the

Euclidean distance (respectively, the canonical distance of F1). Noting the 1/ξ(1) factor in (82), we
have that

NF1
d (
√
ξ(1)u) = Nd(r(u)) ≤ Nd

(√
ξ(1)

ξ′(1)
u

)
≤
(√

ξ′(1)

ξ(1)

10

u
∨ 1

)d

.

Finally notice that, under the canonical distance, diamF1(Sd−1) ≤ 2
√
ξ(1). By Dudley’s inequality,

we have

E max
x∈Sd−1

F1(x) ≤ 24

∫ 2
√

ξ(1)

0

√
logNF1

d (u) du

≤ 24
√
ξ(1)

∫ 2

0

√
logNF1

d (
√
ξ(1)u) du
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≤ 24
√
dξ(1)

∫ 2

0

√√√√log+

(√ξ′(1)

ξ(1)
· 10
u

)
du

≤ C

√
dξ(1) log+

ξ′(1)

ξ(1)
.

This proves the desired upper bound.
In order to prove the lower bound, we use Sudakov’s inequality. Recall that the r-packing

number is lower bounded by the 2r-covering number. For any 0 < r < 1, letting t = r2/2, we have

E max
x∈Sd−1

F1(x) ≥ C ′
√(

ξ(1)− ξ(1− (r2/2)
)
logNd(2r)

≥ C ′
√
d
(
ξ(1)− ξ(1− t)

)
log+

1

t

≥ C ′
√
d
(
ξ′(1)t− ξ′′(1)t2/2

)
log+

1

t
,

where C ′ > 0 is a constant that may change from line to line and where in the last step we used
the intermediate value theorem, and the fact that ξ′′(s) ≤ ξ′′(1) for s ≤ 1. The desired inequality
follows by choosing t = ξ′(1)/(2ξ′′(1)).

Remark A.1. Let L be an integer-valued random variable with probability distribution P(L = ℓ) =
ξℓ/ξ(1). Then the upper and lower bounds of the last proposition are within a constant provided
E[L2] ≤ CE[L]2.

We will next establish upper bounds on the derivatives of the process Fℓ( · ). Before doing it,
we state a useful lemma.

Lemma A.2. Let (Z(x,v) : x ∈ Bd(1),v ∈ Sd−1) be a continuous centered Gaussian process, and
assume that, for some r0 > 0, the following holds for all sets A ⊆ Bd(1):

diam(A) ≤ r0 ⇒ E[ sup
x∈A,v∈Sd−1

Z(x,v)] ≤M(r0) . (86)

Then there exists a universal constant C such that

E[ sup
x∈Bd(1),v∈Sd−1

Z(x,v)] ≤M(r0) + C
√
dV∗ log+(1/r0) , (87)

V∗ := sup
x∈Bd(1),v∈Sd−1

Var(Z(x,v)) . (88)

Proof. Let (Aℓ : ℓ ≤ N) be a covering of Bd(1) with sets of diameter diam(Aℓ) ≤ r0, such that
logN ≤ Cd log+(1/r0). Define

Zℓ := sup
x∈Aℓ,v∈Sd−1

Z(x,v) . (89)

We then have

P
(

sup
x∈Bd(1),v∈Sd−1

Z(x,v) ≥M(r0) + t
)
= P

(
max
ℓ≤N

Zℓ ≥M(r0) + t
)

23



≤ N ·max
ℓ≤N

P
(
Zℓ ≥ EZℓ + t

)
≤ exp

{
Cd log+(1/r0)−

t2

2V∗

}
,

where the last step follows from the Borell-TIS inequality. This proves the claim.

Lemma A.3. Recall that PT,x denotes the projector onto the tangent space to the sphere of radius
∥x∥2 at x. Write, as above, log+(t) = max(log t; 1) Then there exist an absolute constant C such
that, letting x̂ := x/∥x∥2, we have

E max
x∈Bd(1)

∥PT,x∇F1(x)∥2 ≤ C

√
dξ′(1) log+

ξ′′(1)

ξ′(1)
, (90)

E max
x∈Bd(1)

∣∣⟨x̂,∇F1(x)⟩
∣∣ ≤ C

√
dξ′′(1) log+

ξ′′′(1)

ξ′′(1)
, , (91)

E max
x∈Bd(1)

∥PT,x∇2F1(x)PT,x∥op ≤ C

√
dξ′′(1) log+

ξ(3)(1)

ξ′′(1)
, (92)

E max
x∈Bd(1)

∥PT,x∇2F1(x)x̂∥op ≤ C

√
dξ(3)(1) log+

ξ(4)(1)

ξ(3)(1)
, (93)

E max
x∈Bd(1)

⟨x̂,∇2F1(x)x̂⟩ ≤ C

√
dξ(4)(1) log+

ξ(5)(1)

ξ(4)(1)
. (94)

(Here ξ(ℓ) denotes the ℓ-th derivative of ξ.)

Proof. All these inequalities are analogous to the upper bound in Proposition A.1. We will repeat-
edly use Lemma A.2 to restrict ourselves to sets of some small diameter r0.

Consider Eq. (90). Define the following Gaussian process indexed by x ∈ Bd(1), v ∈ Tx,
∥v∥2 = 1

G⊥(v,x) := ⟨v,∇F1(x)⟩ . (95)

We have

E
{
G⊥(v1,x1)G⊥(v2,x2)

}
= ⟨v1,x2⟩⟨x1,v2⟩ ξ′′(⟨x1,x2⟩) + ⟨v1,v2⟩ ξ′(⟨x1,x2⟩) . (96)

This, and other covariance calculations below, can be checked either by writing the derivatives of
F1 explicitly or using that the order of taking derivatives and expectations can be interchanged.
Letting dG,⊥(v1,x1;v2,x2) denote the canonical distance associated to this process, we have

dG,⊥(v1,x1;v2,x2)
2 = ξ′(⟨x1,x2⟩)∥v1 − v2∥22 + ξ′(∥x1∥22)− 2ξ′(⟨x1,x2⟩) + ξ′(∥x2∥22)

+ (⟨v1,x2⟩ − ⟨v2,x1⟩)2ξ′′(⟨x1,x2⟩)
− ⟨v1,x2⟩2ξ′′(⟨x1,x2⟩)− ⟨v1,x2⟩2ξ′′(⟨x1,x2⟩)

≤ ξ′(1)∥v1 − v2∥22 + ξ′(∥x1∥22)− 2ξ′(⟨x1,x2⟩) + ξ′(∥x2∥22)
+ ξ′′(1)∥x1 − x2∥2∥v1 − v2∥2

≤ 2ξ′(1)∥v1 − v2∥22 + ξ′(∥x1∥22)− 2ξ′(⟨x1,x2⟩) + ξ′(∥x2∥22) ,
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where the last inequality follows for ∥x1 − x2∥2 ≤ r0 := ξ′(1)/ξ′′(1). Therefore, for any set A ⊆
Bd(1), diam(A) ≤ r0, using the Sudakov-Fernique inequality we have

Emax
x∈A

max
v∈Tx,∥v∥2=1

G⊥(v,x) ≤ CE max
∥v∥2=1

G1(v) + E max
∥x∥2≤1

G2(x) , (97)

where G1 is a process with canonical distance ξ′(1)∥v1 − v2∥22 and G2 is a process with canonical
distance ξ′(∥x1∥22)− 2ξ′(⟨x1,x2⟩) + ξ′(∥x2∥22). By applying the previous proposition to G2 (with ξ
replaced by ξ′), we obtain

Emax
x∈A

max
v∈Tx,∥v∥2=1

G⊥(v,x) ≤ C
√
sξ′(1) + C

√
dξ′(1) log+

ξ′′(1)

ξ′(1)
. (98)

Finally, using Lemma A.2, we see that

E max
x∈Bd(1)

max
v∈Tx,∥v∥2=1

G⊥(v,x) ≤ C

√
dξ′(1) log+

ξ′′(1)

ξ′(1)
+ C

√
dξ′(1) log+(1/r0) , (99)

which yields the bound of Eq. (90).
Next consider Eq. (91). Recalling the representation (5), we have

⟨x̂,∇F1(x)⟩ =
1

∥x∥2

∑
k≥0

k
√
ξk

d∑
j1,...,jk=1

G
(k)
1,j1...jk

xj1 · · ·xjk , (100)

and therefore

E{⟨x̂1,∇F1(x1)⟩⟨x̂2,∇F1(x2)⟩
}
=

1

∥x1∥2∥x2∥2
[⟨x1,x2⟩2ξ′′(⟨x1,x2⟩) + ⟨x1,x2⟩ξ′(⟨x1,x2⟩)] .

(101)

In other words, ⟨x̂,∇F1(x)⟩ has the same structure as F1(x) provided we replace ξ by ξ′′ + ξ′.
Therefore the claim follows by argument in Proposition A.1.

The bounds (92), (93), (94) follow from similar arguments, and we limit ourselves to defining
the relevant Gaussian process and computing its covariance:

• For Eq. (92), we define H⊥(v,x) indexed by x ∈ Bd(1) and v ∈ Tx via

H⊥(v,x) := ⟨v,∇2F1(x)v⟩ . (102)

Its covariance is (denoting by ξ(ℓ) the ℓ-th derivative of ξ and letting q := ⟨x1,x2⟩)

E
{
H⊥(v1,x1)H⊥(v2,x2)

}
= ξ(4)(q) ⟨x1,v2⟩2⟨v1,x2⟩2 + 4 ξ(3)(q)⟨x1,v2⟩⟨v1,x2⟩⟨v1,v2⟩
+ 2 ξ(2)(q)q2⟨v1,v2⟩2 .

The associated canonical distance is given by

dH,⊥(v1,x1;v2,x2)
2 = ∆1,2 + 2ξ(2)(∥x1∥22)− 4ξ(2)(⟨x1,x2⟩) + 2ξ(2)(∥x2∥22) ,

where ∆1,2 can be bounded as follows for ∥x1 − x2∥2 ≤ c0 with c0 a small absolute constant
(recall that PT,xi

is the projector orthogonal to xi)

∆1,2 = −2ξ(4)(q) ⟨x1,v2⟩2⟨v1,x2⟩2 − 8 ξ(3)(q)⟨x1,v2⟩⟨v1,x2⟩⟨v1,v2⟩
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+ 4 ξ(2)(q)q2(1− ⟨v1,v2⟩2)
≤ 8ξ(3)(q)

∣∣⟨PT,x2x1,v1 − v2⟩⟨PT,x1x2,v1 − v2⟩
∣∣

+ 8ξ(2)(q)∥v1 − v2∥22
≤ 8
(
ξ(3)(q)∥x1 − x2∥22 + ξ(2)(q)

)
∥v1 − v2∥22

≤ 8
(
ξ(3)(q)(1− q) + ξ(2)(q)

)
∥v1 − v2∥22

≤ 8ξ(2)(1)∥v1 − v2∥22 .

Hence the proof of Eq. (92) follows by applying Propopsition A.1 and Lemma A.2.

• For Eq. (93), we define H2(v,x) indexed by x ∈ Bd(1) and v ∈ Tx via

H2(v,x) := ⟨x̂,∇2F1(x)v⟩ . (103)

Its covariance is (here q := ⟨x1,x2⟩)

E
{
H2(v1,x1)H2(v2,x2)

}
=

⟨v1,v2⟩
∥x1∥2∥x2∥2

[
ξ(3)(q)q2 + ξ(2)(q)q

]
+

⟨v1,x2⟩⟨x1,v2⟩
∥x1∥2∥x2∥2

[
ξ(4)(q)q2 + 3ξ(3)(q)q + ξ(2)(q)

]
.

• Finally, for (94) we define

H3(x) := ⟨x̂,∇2F1(x)x̂⟩ ,

and note that (again q := ⟨x1,x2⟩)

E
{
H3(x1)H3(x2)

}
=

1

∥x1∥22∥x2∥22

[
ξ(4)(q)q4 + 4ξ(3)(q)q3 + 2ξ(2)(q)q2

]
.

Proposition A.4. Let DF (x) ∈ Rn×d be the Jacobian of F at x and D2F (x) ∈ Rn×d×d the tensor
of second derivatives. We equivalently view the latter as a linear operator D2F (x) : Rd×d → Rn, and
write D2F (x)|T⊗T for its restriction to Tx ⊗Tx and similarly for D2F (x)|T⊗x̂ and D2F (x)|x̂⊗x̂.

If n ≤ d, there exists an absolute constant C such that (using the notation log+(t) := max(log(t); 1)
introduced above)

E
[

max
x∈Bd(1)

∥DF (x)|T∥op

]
≤ C

√
d ξ′(1) log+

ξ′′(1)

ξ′(1)
, (104)

E
[

max
x∈Bd(1)

∥DF (x)|x̂∥op

]
≤ C

√
d ξ′′(1) log+

ξ(3)(1)

ξ′′(1)
, (105)

E
[

max
x∈Bd(1)

∥D2F (x)|T⊗T∥op

]
≤ C

√
d ξ′′(1) log+

ξ(3)(1)

ξ′′(1)
, (106)

E
[

max
x∈Bd(1)

∥D2F (x)|T⊗x̂∥op

]
≤ C

√
d ξ(3)(1) log+

ξ(4)(1)

ξ(3)(1)
, (107)

E
[

max
x∈Bd(1)

∥D2F (x)|x̂⊗x̂∥op

]
≤ C

√
d ξ(4)(1) log+

ξ(5)(1)

ξ(4)(1)
. (108)
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Proof. All of these bounds follow from Lemma A.3 via the same argument. We will focus to be
definite on the bound (104). We define the following Gaussian process indexed by u ∈ Rn, ∥u∥2 = 1,
x ∈ B(1), v ∈ Tx, ∥v∥2 = 1:

Z(u,v,x) := ⟨u,DF (x)v⟩ , (109)

and notice that of course

max
x∈Bd(1)

∥DF (x)|T∥op = max
u∈Rn,∥u∥2=1

max
v∈Tx,∥v∥2=1

max
x∈Bd(1)

Z(u,v,x) . (110)

We next compute the canonical distance of Z, to get

dZ(u1,v1,x1;u2,v2,x2)
2 =

1

2
∥u1 − u2∥2(ξ′(∥x1∥2) + ξ′(∥x2∥2)) + ⟨u1,u2⟩dG,⊥(v1,x1;v2,x2)

2 ,

(111)

where dG,⊥(v1,x1;v2,x2)
2 is the canonical distance of the process G⊥(v,x) := ⟨v,∇F1(x)⟩ (this

was derived in the proof of Lemma A.3 but will not be needed here). We bound this distance as

dZ(u1,v1,x1;u2,v2,x2)
2 ≤ ξ′(1)∥u1 − u2∥2 + dG,⊥(v1,x1;v2,x2)

2 , (112)

Therefore by Sudakov-Fernique, letting g ∼ N(0, In),

E
[

max
x∈Bd(1)

∥DF (x)|T∥op

]
≤ E

[
max

u∈Sn−1

√
ξ′(1)⟨g,u⟩

]
+ E max

x∈Bd(1)
∥PT,x∇F1(x)∥2 . (113)

The bound (104) then follows from Lemma A.3. The other bounds are proved analogously.

We next use the above estimates to control the Lipschitz constant of F and its derivatives.
Recall that, for x1,x2 ∈ Rd, xi ̸= 0, we let Rx1,x2 ∈ Rd×d be the rotation in the plane x1,x2 such
that Rx1,x2x1/∥x1∥ = x2/∥x2∥. Among the two rotations that leave the orthogonal complement of
x1,x2 unchanged, choose the one with smallest angle, and break ties arbitrarily. (In other words,
Rx1,x2 is the parallel transport on Sd−1.)

Remark A.2. By Borell-TIS inequality, the bounds in Proposition A.1, Lemma A.3 and Propo-
sition A.4 with modified constants also hold with probability at least 1 − exp(−C(ξ)d) for some
C(ξ) > 0.

Definition A.5. For x ∈ Rd, we choose Ux ∈ Rd×(d−1) such that UT
xUx = Id−1, UT

xx = 0
(i.e. Ux is an orthonormal basis for the tangent space Tx.) Further, for x1,x2 ∈ Rd, define
Ux1,x2 := Rx1,x2Ux1.

For Ω ⊆ Rd, we define the following Lipschitz constants

Lip(F ;S) := sup
x1 ̸=x2∈Ω

∥F (x1)− F (x2)∥
∥x1 − x2∥2

, (114)

Lip⊥(DF ; Ω) := sup
x1 ̸=x2∈Ω

∥DF (x1)Ux1 −DF (x2)Ux1,x2∥op

∥x1 − x2∥2
, (115)

Lip⊥(∇2F ; Ω) := sup
x1 ̸=x2∈Ω

max
ℓ≤n

∥UT
x1
∇2Fℓ(x1)Ux1 −UT

x1,x2
∇2Fℓ(x2)Ux1,x2∥op

∥x1 − x2∥2
. (116)
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Lemma A.6. Assume n ≤ d, and recall the notation log+(t) := max(log(t); 1). Then there exists a
universal constant C1, and a ξ-dependent constant C∗(ξ) such that the following hold with probability
at least 1− exp(−d/C∗(ξ)):

Lip(F ;Bd(1)) ≤ C1

√
d ξ′′(1) log+

ξ(3)(1)

ξ′′(1)
, (117)

Lip⊥(DF ;Bd(1)) ≤ C1

√
d ξ(4)(1) log+

ξ(5)(1)

ξ(4)(1)
, (118)

Lip⊥(∇2F ;Bd(1)) ≤ C∗(ξ)
√
d . (119)

Further, the following tighter Lipshitz constant holds on Sd−1:

Lip(F ; Sd−1) ≤ C1

√
d ξ′(1) log+

ξ′′(1)

ξ′(1)
, (120)

Lip⊥(DF ; Sd−1) ≤ C1

√
d ξ′′(1) log+

ξ(3)(1)

ξ′′(1)
. (121)

Proof. Throughout, we make use of Remark A.2.

• The bound (117) follows from Eqs. (104), (105).

• The bound (118) follows from Eqs. (106), (107), (108).

• The proof of Eq. (119) follows by bounding maxx ∥∇3Fℓ(x)∥, which in turn can be done
by the same technique as in the proof of Lemma A.3. Since we are not seeking a precise
characterization of the constant C∗(ξ) it suffices to notice that the canoninical distance of the
process ⟨∇3Fℓ(x),v

⊗3⟩ is bounded by a smooth function of the distances ∥v1−v2∥, ∥x1−x2∥.

• The bound (120) follows from Eqs. (104) by noting that, for x1,x2 ∈ Sd−1, letting x(t) denote
a geodesic on the sphere parametrized by arclength, we have

F (x2)− F (x1) =

∫ t∗

0
DF (x(t))ẋ(t) dt . (122)

Here t∗ := arccos(⟨x1,x2⟩) and we notice that ẋ(t) ∈ Tx(t).

• Finally, for the bound (121) we consider a geodesic path between x1 and x2 in the sphere.
For any two vectors v1 ∈ Tx1 , v2 = Rx1,x2v1 ∈ Tx2 , let v(t) be the parallel transport of v1

along the geodesic connecting x1 to x2. We then have

DF (x2)v2 −DF (x1)v1 =

∫ t∗

0

{
D2F (x(t)){ẋ(t),v(t)}+DF (x(t))v̇(t)

}
dt . (123)

Hence the claim follows from Eqs. (105) and (106)
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B Second moment method: Proof of Theorem 1

In this section we study the volume V(u) of the set of solutions for F (x) = u for a given vector
u ∈ Rn, as defined in Eqs. (9) and (11). We will use the Kac-Rice formula [Kac43, Ric45, Sub23]
to prove that, for any deterministic sequence δd > 0 with limd→∞ δd = 0,

lim
n,d→∞

sup
∥u∥2/

√
n∈[ξ1/20 −δd,ξ

1/2
0 +δd]

E{V(u)2}
E{V(u)}2

= 1 . (124)

This will complete the proof sketch given in Section 2.1.
We begin by computing the first moment. Recall that Voli is the Hausdorff measure of dimen-

sion i, or the counting measure when i = 0.

Proposition B.1. For any u ∈ Rn,

EV(u) = Vd−n−1

(ξ′(1)
ξ(1)

)n
2
e
− ∥u∥2

2ξ(1) , (125)

where Vi := Voli({x ∈ Ri+1 : ∥x∥ = 1}) = 2π
i+1
2 /Γ( i+1

2 ) is the volume of the sphere.

Proof. The proof here is identical to the case u = 0 treated in [Sub23]. We repeat it for completeness,
using the notation of the current paper.

Recall that, for x ∈ Rd on the sphere Ux ∈ Rd×(d−1) denotes a matrix whose columns form
a basis of the tangent space Tx to the sphere of radius ∥x∥2 at x (equivalently, to the orthogonal
complement of x in Rd). We write D⊥F (x) := DF (x)Ux ∈ Rn×d−1.

By a variant of the Kac-Rice formula in [AW09, Theorem 6.8],

EV(u) =
∫
Sd−1

E
[
J(D⊥F (x))

∣∣∣F (x) = u
]
pF (x)(u) dVold−1(x), (126)

where J(A) =
√
detAAT, dVold−1(x) is the (d−1)-dimensional volume element on the sphere and

pF (x)(u) =
(
2πξ(1)

)−n
2 e

− ∥u∥2
2ξ(1)

is the density of F (x) at u. Using the Kac-Rice formula requires checking that certain conditions
are satisfied, this was done in Remark 3 of [Sub23].

Recall that by Lemma 4.1, D⊥F (x)
d
=
√
ξ′(q)Z where q = ∥x∥2, Z ∼ GOE(n, d − 1) and

D⊥F (x) is independent of F (x). Thus,

EV(u) = Vd−1

( ξ′(1)

2πξ(1)

)n/2
e
− ∥u∥2

2ξ(1)EJ(Z). (127)

In the case ξ(t) = t and u = 0, the above is the volume of the set of points on the sphere
orthogonal to n independent Gaussian vectors, hence equal to Vd−n−1. Hence,

Vd−n−1 = Vd−1

( 1

2π

)n/2
E J(Z) (128)

and (125) follows.

The next theorem establishes the desired second moment bound. To verify this note that the
function Φ(r) defined here matches Ψ(r;α, ξ) of Eq. (7), if we replace γ2 by αξ(0) and ξ(t) by
ξ>0(t) = ξ(t)− ξ(0), and that condition (129) is implied by α < αLB(ξ).
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Theorem 7. Assume that ξ(0) = ξ′(0) = ξ′′(0) = 0. Let γ ≥ 0 and α ∈ (0, 1] and define

Φ(r) :=
1

2
log(1− r2)− α

2
log
(
1− ξ(r)2

ξ(1)2

)
+

γ2

ξ(1)
− γ2

ξ(1) + ξ(r)
.

If for any ε > 0,

Φ(0) > sup
r∈(ε,1)

Φ(r) , (129)

then for any deterministic sequence δd > 0 such that limd→∞ δd = 0,

lim
d,n→∞

E
(
V(u)2

)(
EV(u)

)2 = 1 (130)

uniformly in n = n(d) < d− 1 and u = u(n,d) ∈ Rn such that limd→∞ n(d) → α and
√
d(γ − δd) ≤

∥u∥ ≤
√
d(γ + δd).

Proof. To simplify the proof, throughout we will assume that n ≤ d−2. The case in which n = d−1
infinitely often (in particular α = 1) was treated for u = 0 in [Sub23] and the argument can be
adapted to our situation with u ̸= 0, but to save space we will omit the proof. We refer the
interested reader to Lemmas 8 and 9 in [Sub23].

For any union of intervals I ⊂ [−1, 1], define

V(2)(u, I) := Vol2(d−n−1)

({
(x,y) : ⟨x,y⟩ ∈ I, F (x) = F (y) = u,x,y ∈ Sd−1

})
.

As in the proof of Proposition B.1, we may apply the Kac-Rice formula to the random field
(x,y) → (F (x),F (y)) defined on the domain

D(I) := {(x,y) : ⟨x,y⟩ ∈ I, ∥x∥ = ∥y∥ = 1} (131)

to compute the expectation of V(2)(u, I), see Section 3 of [Sub23] for the details. This yields that

EV(2)(u, I) =
(
ξ′(1)

)n ∫
(x,y)∈D(I)

pF (x),F (y)(u,u)T (u, ⟨x,y⟩) dVold−1(x)dVold−1(y)

= Vd−1 ·
(
ξ′(1)

)n ∫
{y∈Sd−1: ⟨x,y⟩∈I}

pF (x),F (y)(u,u)T (u, ⟨x,y⟩)dVold−1(y), (132)

where in the second line x is an arbitrary point on the sphere, and writing ⟨x,y⟩ = r, we have

pF (x),F (y)(u,u) = (2π)−n(ξ(1)2 − ξ(r)2)−
n
2 e

− ∥u∥2
ξ(1)+ξ(r)

is the density of (F (x),F (y)) at (u,u) since the covariance matrix of (Fi(x), Fi(y)) is(
ξ(1) ξ(r)
ξ(r) ξ(1)

)
,

and we define (always for ⟨x,y⟩ = r)

T (u, r) := E

[
J
(D⊥F (x)√

ξ′(1)

)
J
(D⊥F (y)√

ξ′(1)

) ∣∣∣∣F (x) = F (y) = u

]
. (133)
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By rotational invariance T (u, r) does not depend on the choice of Ux and Uy and of x and y as
long as ⟨x,y⟩ = r.

Using the co-area formula with the function ρ(y) = ⟨x,y⟩, we may express the integral w.r.t.
y in Eq. (132) as a one-dimensional integral over a parameter r (the volume of the inverse-image
ρ−1(r) and the inverse of the Jacobian are given by Vd−2(1−r2)(d−2)/2 and (1−r2)−1/2, respectively).
This yields

EV(2)(u, I) = Vd−1Vd−2(2π)
−n

∫
I

(
ξ′(1)2

ξ(1)2 − ξ(r)2

)n/2

(1− r2)
d−3
2 T (u, r)e

− ∥u∥2
ξ(1)+ξ(r)dr . (134)

From Eqs. (127) and (134),we get

EV(2)(u, I)(
EV(u)

)2 =
Vd−2

Vd−1

∫
I

T (u, r)(
EJ(Z)

)2 (1− ξ(r)2

ξ(1)2

)−n/2

(1− r2)(d−3)/2e
∥u∥2
ξ(1)

− ∥u∥2
ξ(1)+ξ(r)dr. (135)

The next lemma provide a useful bound on the integrand.

Lemma B.2. Assume that ξ(0) = ξ′(0) = 0. Define

κ = κ(r) =
ξ′(r)

ξ(1) + ξ(r)

√
1− r2

ξ′(1)
. (136)

Then for some universal constant c and sequence τd → 0, for any r ∈ (−1, 1),

T (u, r)(
EJ(Z)

)2 ≤
(
1 + τd

)(
1 + 2r2

√
d
)(
1 + cκ(r)∥u∥+ cκ(r)2∥u∥2

)
.

Before proving this lemma, let us complete the proof of the theorem. Note that Vd−2

Vd−1
=√

d
2π (1 + od(1)). Hence, we have that

1

d
log

EV(2)(u, I)(
EV(u)

)2 ≤ 1

d
log

∫
I
ν(u, r) dr + od(1) ,

where the od(1) term is independent of u and n, and

ν(u, r) :=

(
1− ξ(r)2

ξ(1)2

)−n/2

(1− r2)(d−3)/2
(
1 + cκ(r)∥u∥+ cκ(r)2∥u∥2

)
e

∥u∥2
ξ(1)

− ∥u∥2
ξ(1)+ξ(r) .

Note that ν(u, r) ≤ (1 − r2)−1/2edΦ(r)+o(d), uniformly in n ≤ d − 2,
√
d(γ − δd) ≤ ∥u∥ ≤√

d(γ + δd) and r ∈ (−1, 1). Assuming that n = n(d) → α, since (1 − r2)−1/2 is integrable on
(−1, 1), we have that for any ε > 0, uniformly in

√
d(γ − δd) ≤ ∥u∥ ≤

√
d(γ + δd),

lim sup
d→∞

1

d
log

EV(2)(u, [−1, 1] \ (−ε, ε))(
EV(u)

)2 ≤ sup
r∈[ε,1]

Φ(r) < Φ(0) = 0 ,

where the second inequality follows by assumption.
Of course, the same bound holds with some sequence εd → 0 instead of ε. Since the ratio

of moments in (130) is lower bounded by 1, to prove the same equation it remains to show that,
uniformly,

lim sup
d→∞

EV(2)(u, (−εd, εd))(
EV(u)

)2 ≤ 1 . (137)
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Note that ξ(r)
ξ(1) = O(r3) and κ(r) = O(r2) for small r, since we assume that ξ(0) = ξ′(0) =

ξ′′(0) = 0, and recall that Vd−2

Vd−1
=
√

d
2π (1 + od(1)). From (135) we obtain that the ratio in (137) is

equal to

(1 + od(1))

√
d

2π

∫ εd

−εd

T (u, r)(
EJ(Z)

)2 (1−O(r6)
)−n/2

(1− r2)d/2e
∥u∥2
ξ(1)

O(r3)
dr

= (1 + od(1))

√
d

2π

∫ εd

−εd

exp
(
− d

2
r2 + 2

√
dr2 +

γ2d

ξ(1)
O(r3) + dO(r6) + cγ

√
dO(r2) + cγ2dO(r4)

)
dr

where we used Lemma B.2 and that log(1 + t) ≤ t. This proves (137) and completes the proof.

Proof of Lemma B.2. Fix some r ∈ (−1, 1). Let M1 and M2 be jointly Gaussian, centered random
matrices such that

cov(M t
ij ,M

s
kl) = δikδjl ·



1 t = s, j < d− 1

1− ξ(1)
ξ′(1)

ξ′(r)2(1−r2)
ξ(1)2−ξ(r)2

t = s, j = d− 1
ξ′(r)
ξ′(1) t ̸= s, j < d− 1

r ξ
′(r)

ξ′(1) −
ξ′′(r)
ξ′(1) (1− r2)− ξ(r)

ξ′(1)
ξ′(r)2(1−r2)
ξ(1)2−ξ(r)2

t ̸= s, j = d− 1

0 otherwise.

(138)

Suppose x and y are such that ⟨x,y⟩ = r ∈ (−1, 1). In Lemma 6 of [Sub23] it was shown that for
an appropriate choice of Ux and Uy (bases of the tangent spaces Tx, Ty),(

D⊥F (x)√
ξ′(1)

,
D⊥F (y)√

ξ′(1)

)
d
=
(
M1 − κu · eTd−1, M

2 + κu · eTd−1

)
,

where ed−1 ∈ Rd−1 is the last (column) vector in the standard basis and κ is defined in (136). (To
be precise, only the case u = 0 was treated there, but only the conditional expectation depends on
u and is easily computed in the same way.)

Let O be some orthogonal matrix such that Ou = (0, . . . , 0, ∥u∥)T. Since J(A) = J(OA) and
(OM1,OM2)

d
= (M1,M2),(

J

(
D⊥F (x)√

ξ′(1)

)
, J

(
D⊥F (y)√

ξ′(1)

))
d
=
(
J
(
M̂

1)
, J
(
M̂

2))
,

where we denote M̂
1
:= M1 − κ∥u∥eneTd−1 and M̂

2
:= M2 + κ∥u∥eneTd−1. Recall that for any

matrix A, J(A) =
∏n

i=1Θi(A), where we define Θi(A) as the norm of the projection of the i-th
row of A to the orthogonal space to its first i − 1 rows. Note that Θi(M̂

j
) = Θi(M

j) for i < n

and Θn(M̂
j
) ≤ Θn(M

j) + κ∥u∥. Therefore, using independence of the rows anf the orthogonal
invariance of Gaussians,

T (u, r) ≤ E
[ n−1∏

i=1

Θi(M
1)
(
Θn(M

1) + κ∥u∥
) n−1∏
i=1

Θi(M
2)
(
Θn(M

2) + κ∥u∥
)]

= E
[
J(M1)J(M2)

](
1 +

2κ∥u∥EΘn(M
1)

E
[
Θn(M

1)Θn(M
2)
] + κ2∥u∥2

E
[
Θn(M

1)Θn(M
2)
]) .
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Using that Θn(M
i) ∼ χn−d, we have that, for some universal constant c,

T (u, r) ≤ E
[
J(M1)J(M2)

](
1 + cκ(r)∥u∥+ cκ(r)2∥u∥2

)
.

Lemma 10 of [Sub23] bounds T (u, r) for u = 0, which is exactly equal to E
[
J(M1)J(M2)

]
.

Precisely, it states that

T (0, r) = E
[
J(M1)J(M2)

]
≤
(
1 + τd

)(
1 + 2r2

√
d
)
,

for some universal τd → 0. This completes the proof.

C Large-p Asymptotics of the lower bound: Eq. (12)

For ξ(t) = ξ0 + tp, the function Ψ(r) = Ψ(r;α, ξ0, p) of Eq. (7) reads

Ψ(r;α, ξ0, p) :=
1

2
log(1− r2)− α

2
log
(
1− r2p

)
+ αξ0

rp

1 + rp
, (139)

and since Ψ′′(0;α, ξ0, p) = −1 for all α, we have

αLB(ξ0, p) := inf
{
α ≥ 0 : sup

r∈[0,1]
Ψ(r;α, ξ0, p) > 0

}
. (140)

To get an upper bound on αLB(ξ0, p), we choose r = 1 − M/p for some constant M > 0.
Recalling that ξ0 = γ0 log p for some constant γ0 > 1, it is easy to compute that, as p→ ∞,

Ψ
(
r = 1− M

p

)
= −1

2
log p+ αξ0

e−M

1 + e−M
+O(1) (141)

=
(
− 1

2
+

αγ0
1 + eM

)
log p+O(1) . (142)

Therefore, for all p large enough

αLB(ξ0 = γ0 log p, p) ≤
eM + 1

2γ0
. (143)

Since M > 0 is arbitrary, we get lim supp→∞ αLB(ξ0 = γ0 log p, p) ≤ 1/γ0.
Next we prove the lower bound. For that purpose, we will fix γ0 > 1, assume that ξ0 = γ0 log p,

α ≤ (1− ε)γ−1
0 and prove that supr∈[0,1]Ψ(r;α, ξ0, p) ≤ 0 for all p large enough. Note that, under

these definitions, Ψ(r;α, ξ0, p) ≤ Ψ∗(r), where

Ψ∗(r) :=
1

2
log(1− r2)− 1

2
log
(
1− r2p

)
+ (1− ε)

rp

1 + rp
log p . (144)

We split the maximization over r in two regions (depending on a constant ∆ to be fixed below):

1. 0 ≤ r ≤ 1− p−1+∆. For an absolute constant C, we have

Ψ∗(r) ≤ −1

2
r2 + C(log p)rp (145)

≤
(
− 1

2
+ C ′(log p)e−p∆

)
r2 . (146)
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2. 1− p−1+∆ < r < 1. Setting r = 1− x/p, x ∈ (0, p∆), we have

Ψ∗(r) ≤
1

2
log
(2x
p

)
− 1

2
log(1− e−2x) +

1− ε

1 + ex
log p

≤ −ε
2
log p+

1

2
log(2x)− 1

2
log(1− e−2x)

≤ −ε
2
log p+

1

2
log(2p∆) + 1

≤
(
∆− ε

2

)
log p+ 2 .

Therefore the claim follows by choosing ∆ = ε/4.

D Upper bounds on the existence threshold: Proof of Theorem 2

Note that
Soln,d(ε) ̸= ∅ ⇐⇒ min

x∈Sd−1
max

v∈Sn−1
⟨F (x),v⟩ ≤

√
nξ(1)ε . (147)

We define the two Gaussian processes on Sd−1 × Sn−1,

f1(x,v) := ⟨F (x),v⟩+
√
ξ(1) z, f2(x,v) := F1(x) +

√
ξ(1) ⟨v, g⟩ ,

where g ∼ N(0, In) and z ∼ N(0, 1), independent of each other and F (x). Clearly,

Ef1(x1,v1)f1(x
2,v2) = ξ(⟨x1,x2⟩) ⟨v1,v2⟩+ ξ(1) ,

Ef2(x1,v1)f2(x
2,v2) = ξ(⟨x1,x2⟩) + ξ(1)⟨v1,v2⟩ .

For x1 = x2 the two covariance functions coincide and for general x1,x2 ∈ Sd−1,

Ef1(x1,v1)f1(x
2,v2) ≥ Ef2(x1,v1)f2(x

2,v2) .

Hence, by Gordon’s Gaussian comparison inequality [Gor85], we have

min
x∈Sd−1

max
v∈Sn−1

f1(x
2,v2) ⪰ min

x∈Sd−1
max

v∈Sn−1
f2(x

2,v2) ,

where ⪰ denotes stochastic domination. In particular, for any c > 0,

e
1
2
c2dξ(1) · E exp

{
− c

√
d min
x∈Sd−1

max
v∈Sn−1

⟨F (x),v⟩
}
= E exp

{
− c

√
d min
x∈Sd−1

max
v∈Sn−1

f1(x,v)
}

≤ E exp
{
− c

√
d
(

min
x∈Sd−1

F1(x) +
√
ξ(1)∥g∥

)}
.

Using Eq. (147) and Markov’s inequality,

P
(
Soln,d(ε) ̸= ∅

)
≤ ec

√
dnξ(1)εE exp

{
− c

√
d min
x∈Sd−1

max
v∈Sn−1

⟨F (x),v⟩
}

≤ edε
′− 1

2
c2dξ(1) Ee−c

√
dξ(1)∥g∥ E exp

{
c
√
d max
x∈Sd−1

F1(x)
}
,

(148)

where in the second line we defined ε′ := c
√
αξ(1)ε.
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By Cramer’s theorem, for t ∈ (0, 1],

P(∥g∥ < t
√
n) = P(∥g∥2 < t2n) = exp

(
− n

t2 − 1

2
+ n log t+ o(n)

)
and therefore

lim
n,d→∞

1

d
logEe−c

√
dξ(1)∥g∥ = φ2(c, α) . (149)

Let F p
1 (x) be the random process as defined in (3) with ξ(t) = tp and let z ∼ N(0, 1) be

independent of F p
1 (x). Then, F1(x)

d
= F p

1 (x) + ξ0z as processes. By Markov’s inequality and
[Auf13, Theorem 2.8], for t ≥ 0,

P
(

max
x∈Sd−1

F p
1 (x) ≥

√
d(E + t)

)
≤ edΘp(E+t)+o(d) .

For s ≥ 0, of course, P(ξ0z ≥
√
dt) ≤ e

− 1
2

dt2

ξ20
+o(d)

. Combining these facts, one easily sees that

lim
n,d→∞

1

d
logE exp

{
c
√
d max
x∈Sd−1

F1(x)
}
= φ1(c, p) . (150)

The lemma follows from (148), (149) and (150).

E Analysis of gradient descent: Proof of Theorem 3

Since calculations are more transparent in the case of gradient flow, we will first treat this case,
and then outline the modifications that arise for discrete time. Both arguments are standard in the
machine learning literature [DZPS18, COB19, OS20, ADH+19, AZLL19, BMR21] and we therefore
present them succinctly.

E.1 Gradient flow

For gradient flow the time t ∈ R≥0 is continuous and the state is updated according to

ẋ(t) = −PT,x(t)∇H(x(t)) . (151)

(Recall the definition of cost function H(x) = ∥F (x)∥22/2.)

Lemma E.1. Let λ0 := σmin(DF (x(0))|T,x(0)) and Ln := Lip⊥(DF ; Sd−1), with the Lipschitz
constant of Definition A.5. If

Ln∥F (x(0))∥2 <
λ20
4
, (152)

then for all t ≥ 0,

∥F (x(t))∥22 ≤ ∥F (x(0))∥22 e−λ2
0t/4 . (153)

Proof. We define K(x) := DF (x)PT,xDF (x)T. Then the gradient flow equation implies

d

dt
F (x(t)) = −K(x(t)) · F (x(t)) . (154)
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Let

B :=
{
x ∈ Sd−1 : σmin(DF (x)|T,x) ≤

λ0
2

}
. (155)

Obviously x(0) ∈ Bc. Further, letting dSd−1(x1,x2) := arccos(⟨x1,x2⟩) denote the geodesic distance
on the unit sphere, we have

dSd−1(x(0), B) := inf
{
dSd−1(x(0),x) : x ∈ B

}
≥ λ0

2Ln
. (156)

Define t∗ := inf{t : x(t) ∈ B}. For all t ≤ t∗, we have

d

dt
∥F (x(t))∥22 ≤ −λ

2
0

4

∥∥F (x(t))
∥∥2
2
, (157)

which implies Eq. (153) for all t ≤ t∗
We next prove that t∗ = ∞. Indeed, note that for t ≤ t∗,

d

dt
∥F (x(t))∥2 = − 1

∥F (x(t))∥2
∥∥PT,x(t)DF (x(t))TF (x(t))

∥∥2
2

(158)

≤ −σmin(DF (x(t))PT,x(t))
∥∥PT,x(t)DF (x(t))TF (x(t))

∥∥
2

(159)

≤ −λ0
2

∥∥PT,x(t)DF (x(t))TF (x(t))
∥∥
2
. (160)

Further, denoting by u(t) ∈ Tx(t) the unit vector that is tangent to the geodesic between x(0) and
x(t) at x(t), we have

d

dt
dSd−1(x(t),x(0)) = −⟨PT,x(t)DF (x(t))TF (x(t)),u(t)⟩ . (161)

Therefore,

d

dt

{
dSd−1(x(t),x(0)) +

2

λ0
∥F (x(t))∥2

}
≤ 0 . (162)

whence, for all t ≤ t∗, we have dSd−1(x(t),x(0)) ≤ 2∥F (x(0))∥2/λ0. Recalling Eq. (152), we get
t∗ = ∞ as claimed.

We next prove a version of Theorem 3 for gradient flow.

Theorem 8. Consider gradient flow, as defined in Eq. (151), with respect to the energy function
H(x) = ∥F (x)∥22/2 with F the Gaussian process defined in Section 1, and initialization x(0) inde-
pendent of F . Assume n, d→ ∞ with n/d→ α ∈ [0, 1). Define, for c0 a sufficiently small absolute
constant,

αGF(ξ) :=
c0ξ

′(1)2

ξ′′(1)ξ(1)
(
log(ξ(3)(1)/ξ′′(1)) ∨ 1

) . (163)

If α < αGF(ξ), then the following happens with high probability. For all t ≥ 0

∥F (x(t))∥22 ≤ 2nξ(1) exp
(
− 3ξ′(1)

16

(√
d−

√
n
)2 · t) . (164)
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Proof. This is an immediate application of Lemma E.1, whereby we note that

∥F (x0)∥22 = nξ(1) + oP (n) , (165)

σmin(DF (x(0))|T,x(0)) =
√
ξ′(1)

(√
d−

√
n
)
+ oP (

√
n) , (166)

Lip⊥(DF ;Sd−1) ≤ C

√
d ξ′′(1) log

ξ(3)(1)

ξ′′(1)
. (167)

where the last inequality holds with high probability for a universal constant C. The first estimate
is by the law of large numbers, the second by Lemma 4.1, which implies DF (x)Ux =

√
ξ′(q)Z

with Z ∼ GOE(n, d−1) and q = ∥x∥22 and the Bai-Yin law, and for the last one, we refer to Lemma
A.6.

E.2 Gradient descent

The analogue of Lemma E.1 for gradient descent is stated in the main text as Lemma 3.1.

Proof of Lemma 3.1. The key step is to prove that an inequality analogous to the upper bound
(157) holds for all k ≤ k⋆ := min{k : xk ∈ B} with B defined as per Eq. (155), which we copy here
for the reader’s convenience

B :=
{
x ∈ Sd−1 : σmin(DF (x)|T,x) ≤

λ0
2

}
. (168)

To this end first note that∥∥zk+1 − xk
∥∥ = η

∥∥PTDF (xk)TF (xk)
∥∥
2
≤ ε0 . (169)

(In what follows we omit the reference to the point on the sphere from the projector PT.)
Further there exist ξk(i) ∈ [xk, zk+1] (here [u,v] denotes the segment between u and v ∈ Rd)

such that

Fi(z
k+1) = Fi(x

k)− η∇Fi(x
k)TPTDF (xk)TF (xk)− η[∇Fi(ξ

k
(i))−∇Fi(x

k)]TPTDF (xk)TF (xk)

=: Fi(x
k)− η∇Fi(x

k)TPTDF (xk)TF (xk) + ∆k
i .

We have the estimate

|∆k
i | ≤ ηJn · ∥zk+1 − xk∥2 · ∥PTDF (xk)TF (xk)∥2 (170)

≤ Jnη
2∥PTDF (xk)TF (xk)∥22 . (171)

Further by Pythagoras’ theorem ∥zk+1∥22 = 1+ ∥zk+1 −xk∥2, whence, for some ζk(i) ∈ [zk+1,xk+1],∣∣Fi(x
k+1)− Fi(z

k+1)
∣∣ = ∣∣⟨∇Fi(ζ

k
(i)),x

k+1⟩
∣∣ · ∣∣∥zk+1∥2 − 1

∣∣
≤ sup

x∈Bd(1+ε0)

∥∇Fi(x)∥2 · ∥zk+1 − xk∥22

≤Mnη
2
∥∥PTDF (xk)TF (xk)

∥∥2
2
.

We therefore obtain that

F (xk+1) = F (xk)− ηDF (xk)PTDF (xk)TF (xk) +∆k , (172)
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∥∆k∥2 ≤
√
n(Jn +Mn)η

2
∥∥PTDF (xk)TF (xk)

∥∥2
2

≤ η

10maxx∈Sd−1 ∥F (x)∥2
∥∥PTDF (xk)TF (xk)

∥∥2
2
, (173)

where the last inequality follows from Eq. (27). Further∥∥F (xk)− ηDF (xk)PTDF (xk)TF (xk)
∥∥
2
≤ ∥F (xk)∥2 + ηMn∥PTDF (xk)TF (xk)

∥∥
2

≤ (1 + ηM2
n)∥F (xk)∥2

≤ 2∥F (xk)∥2 . (174)

Again, in the last step, we used condition (27). Also, note that by Eq. (173) and condition (27), we
have

∥∆k∥2 ≤
η

8maxx∈Sd−1 ∥F (x)∥2
M2

n∥F (xk)
∥∥2
2
≤ 1

10
∥F (xk)

∥∥
2
. (175)

Using Eqs. (172) and (174), we get

∥F (xk+1)∥22 ≤
∥∥F (xk)− ηDF (xk)PTDF (xk)TF (xk)

∥∥2
2
+ 4∥∆k∥2∥F (xk)∥2 + ∥∆k∥22 .

Using Eqs. (172) to (175), we get

∥F (xk+1)∥22 ≤
∥∥F (xk)− ηDF (xk)PTDF (xk)TF (xk)

∥∥2
2
+ 5∥∆k∥2∥F (xk)∥2

≤
∥∥F (xk)− ηDF (xk)PTDF (xk)TF (xk)

∥∥2
2
+
η

2

∥∥PTDF (xk)TF (xk)
∥∥2
2

≤ ⟨F (xk),
(
I − 3

2
ηK(xk) + η2K(xk)2

)
F (xk)⟩ . (176)

Since ηλmax(K(xk)) ≤ ηM2
n ≤ 1 by Eq. (27), we conclude that

∥F (xk+1)∥22 ≤
(
1− 1

2
ηλmin(K(xk))

)
∥F (xk)∥22 ,

and therefore, for any k ≤ k⋆,

∥F (xk)∥22 ≤e−ηλ2
0k/8∥F (x0)∥22 .

We are left with the task of proving that k⋆ = ∞. To this end we proceed as in the case of
gradient flow. Namely, we note that, for k ≤ k⋆ Eq. (176) implies (for ηλmax(K(xk)) ≤ 1)

∥F (xk+1)∥22 ≤ ∥F (xk)∥22 −
η

2

∥∥PTDF (xk)TF (xk)
∥∥2
2

(177)

≤ ∥F (xk)∥22 −
λ0η

4

∥∥PTDF (xk)TF (xk)
∥∥
2
∥F (xk)∥2 , (178)

and therefore

∥F (xk+1)∥2 ≤ ∥F (xk)∥2 −
λ0η

8

∥∥PTDF (xk)TF (xk)
∥∥
2
. (179)

Further

dSd−1(xk+1,x0) ≤ dSd−1(xk+1,x0) + η
∥∥PTDF (xk)TF (xk)

∥∥
2
. (180)

Therefore, defining Ψ(x) := dSd−1(x,x0) + (8/λ0)∥F (x)∥2, we have Ψ(xk+1) ≤ Ψ(xk), whence the
proof follows.
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We are now in position to prove Theorem 3.

Proof of Theorem 3. The proof consists in using the estimates of Section A to check the assumptions
of Lemma 3.1.

More precisely, the assumption in (26) holds with high probability under condition (29), using
the estimates (165) to (167) that we obtained in the case of gradient flow. The convergence rate
(30) follows from Eqs. (28) and (166).

Finally, the assumption in (27) on the stepsize, holds with high probability when η < 1/(C1d)
with C1 large enough, because the following inequalities hold with high probability for C = C(ξ) a
sufficiently large constant:

max
x∈Sd−1

∥F (x)
∥∥
2
≤ C

√
d , (181)

max
x∈Sd−1

∥PTDF (x)TF (x)
∥∥
2
≤ C d , (182)

Jn ∨Mn ≤ C
√
d . (183)

These inequalities follow from Propositions A.1 and A.4, thus completing the proof.

F Analysis of Hessian descent: Proof of Theorem 4

We will collect some random matrix theory results (mainly about the distribution of the Hessian)
in Section F.1, and use them to prove Theorem 4 in Section F.2.

F.1 Random matrix theory

Throughout, for M ≤ N , we let W ∼ GOE(N) independent of Z ∼ GOE(M,N) and define

A = AM,N := a
√
NW + bZTZ . (184)

Lemma F.1. Assume a, b, α ∈ R≥0, and recall the definition of Q, z∗ from Theorem 4, namely

Q(m;α, a, b) := − 1

m
+

αb

1 + bm
− a2m, (185)

z∗(α, a, b) := − sup
m>0

Q(m;α, a, b) . (186)

Further, let S( · ;α, a, b) : H → C be the only analytic function on the upper half plane, such that:
(i) S( · ;α, a, b) = −1/z + o(1/z) as z → i∞; (ii) S(z;α, a, b) solves Q(S;α, a, b) = z.

Then the following hold almost surely in the limit M,N → ∞ with M/N → α ∈ (0, 1].

1.

lim
M,N→∞

1

N
λmin(AM,N ) = −z∗(α, a, b) . (187)

2. For z ∈ H (the upper half complex plane)

lim
M,N→∞

1

N
Tr
(
(AM,N/N − zI)−1

)
= S(z;α, a, b) . (188)

3. If a > 0, α < 1 then,

2a
√
1− α < z∗(α, a, b) < 2a . (189)
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4. Letting ν̂M,N ( · ; a, b) denote the empirical spectral distribution of AM,N/N , there exists a non-
decreasing, deterministic function ν0( · ; a, b) : R → R≥0 such that ν0(t; a, b) > 0 for all a, b ≥ 0
and z∗ = z∗(α, a, b), almost surely

lim
M,N→∞

ν̂M,N (−z∗ + t; a, b) ≥ ν0(t; a, b) . (190)

5. For any a0, b0 > 0, t > t′ > 0, we have

lim
M,N→∞

inf
a∈[0,a0],b∈[0,b0]

ν̂M,N (−z∗ + t; a, b) ≥ νmin(t
′; a0, b0) , (191)

νmin(t
′; a0, b0) := inf

a∈[0,a0],b∈[0,b0]
ν0(t

′; a, b) > 0 . (192)

Proof. The asymptotic R-transforms of the random matrices X := W /
√
N , Y := ZTZ/N are

[MS17]

RX(z) = z , RY (z) =
α

1− z
. (193)

Since X, Y are asymptotically free,

RA/N (z) = aRX(az) + bRY (bz) (194)

= a2z +
αb

1− bz
. (195)

Therefore, we have Q(m;α, a, b) = RA/N (−m) − m−1. Point 2 follows then from the standard
connection between Stieltjes transform and S-transform.

Point 1 follows from [CDMFF11].
For part 3, Eq. (189) follows from the inequalities

− 1

m
− a2m < Q(m;α, a, b) < − 1

m
+
α

m
− a2m. (196)

For part 4, note that Q(S;α, a, b) = z is a third order algebraic equation for the Stieltjes
transform S, with coefficients that depend continuously on a, b, z. The equation reduces to a second
order one if a = 0 or b = 0. By the definition of z∗, there exists r > 0 such that, for z ∈ (−z∗,−z∗+r)
this equation has three solutions, of which two are complex conjugates. The imaginary part of these
solutions gives (up to a constant factor) the asymptotic density of empirical spectral distribution,
which is strictly positive, hence implying the claim (see e.g. [AGZ09, Theorem 2.4.3]).

Finally, we consider part 5. On the favorable event G := {∥W ∥2F ≤ 2N2, ∥ZTZ∥2F ≤ 2N3}
(which holds with probability at least 1− exp(−cN)), we have∥∥∥ 1

N
AM,N (a1, b1)−

1

N
AM,N (a2, b2)

∥∥∥
F
≤ 4

√
N∥(a1, b1)− (a2, b2)∥2 , (197)

where we noted explicitly the dependence of AM,N on parameters a, b. Hence, by the Wielandt-
Hoffman inequality, for any Lipschitz function f : R → R, the following holds on F for all
a1, a2, b1, b2 ≥ 0:∣∣∣∣∫ f(x) ν̂M,N (dx; a1, b1)−

∫
f(x) ν̂M,N (dx; a2, b2)

∣∣∣∣ ≤ 4∥f∥Lip · ∥(a1, b1)− (a2, b2)∥2 . (198)
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Using the function

ft,ε(x) =


1 if x ≤ −z∗ + t− ε,
(−z∗ + t− x)/ε if −z∗ + t− ε < x < −z∗ + t,
0 if −z∗ + t ≤ x,

(199)

we get, for all a1, a2, b1, b2 ≥ 0:

ν̂M,N (−z∗ + t; a1, b1) ≥
∫
ft,ε(x) ν̂M,N (dx; a1, b1)

≥
∫
ft,ε(x) ν̂M,N (dx; a2, b2)−

4

ε
∥(a1, b1)− (a2, b2)∥2

≥ ν̂M,N (−z∗ + t− ε; a2, b2)−
4

ε
∥(a1, b1)− (a2, b2)∥2 .

Let Sδ be a finite δ-net in [0, a0]× [0, b0]. Using the last inequality and the result at point 4 on Sδ,
alongside Borel-Cantelli (which implies that G holds eventually almost surely), we get

lim
M,N→∞

inf
a∈[0,a0],b∈[0,b0]

ν̂M,N (−z∗ + t; a, b) ≥ min
(a,b)∈Sδ

ν0(t− ε; a, b)− 4δ

ε
.

The lower bound (191) follows by taking δ → 0.
Finally to prove Eq. (192), i.e. νmin(t

′; a, b) > 0 strictly, we note that

ν0(t
′; a, b) ≥ ν0(ft′,ε; a, b) :=

∫
ft′,ε(x) ν0(dx; a, b) . (200)

Further, (a, b) 7→ ν0(ft′,ε; a, b) is Lipschitz continuous by point 4 and the argument given above
(with Lipschitz modulus 4/ε), and ν0(ft′,ε; a, b) ≥ ν0(t

′ − ε; a, b) > 0 for any a, b. Therefore, by
taking ε ∈ (0, t′), we get νmin(t

′; a, b) > infa,b∈[0,a0]×[0,b0] ν0(ft′,ε; a, b) > 0.

Lemma F.2. Let a0, b0 ∈ R≥0, α ∈ (0, 1] and, for (a, b) ∈ [0, a0] × [0, b0] let z∗ = z∗(α; a, b) be
defined as in Lemma F.1. Let M = M(N) be a sequence such that M/N → α as N → ∞. Then
for any fixed a0, b0, t, c > 0, there exists C(t) = C(t, c, a0, b0, α) such that, if (a, b) ∈ [0, a0]× [0, b0]
then for large enough N ,

P
(
λmin(AM,N ) ≥ N(−z∗ + t)

)
≤ C(t) e−N2/C(t) . (201)

Proof. Throughout the proof, we denote by C constants that depend on a0, b0, α, t, c, and possibly
other quantities as indicated, but not on a, b.

Define W /
√
N := 1√

2
(G+GT) and S := Z/

√
N so that N−1AM,N = a√

2
(G+GT) + bSTS,

and G,S are matrices containing i.i.d. random variables N(0, 1/N). Further, for ε > 0, define

Bε :=
a√
2
(G+GT) + bM ε(S) , (202)

M ε(S) := ST(I + εSST)−1S . (203)

Since N−1AM,N ⪰ Bε, it is sufficient to prove the following claim:

Claim. For any a0, b0, α, t, c > 0, there exists ε, C ≥ 0 such that P
(
λmin(B

ε) ≥ −z∗ +
t
)
≤ C exp(−N2/C) for all (a, b) ∈ [0, a0]× [0, b0] and large N .
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In order to prove this claim, we view Bε as a function of the N2 + NM random variables
(Gij , Sij). Note that

∥Bε(G1,S1)−Bε(G2,S2)∥F ≤2a∥G1 −G2∥F + b∥M ε(S1)−M ε(S2)∥F . (204)

Further

∥M ε(S1)−M ε(S2)∥F
(a)
=

1

ε

∥∥(I + εST
1S1)

−1 − (I + εST
2S2)

−1
∥∥
F

(b)
=
∥∥(I + εST

1S1)
−1(ST

1S1 − ST
2S2)(I + εST

2S2)
−1
∥∥
F

(c)

≤
∥∥(I + εST

1S1)
−1ST

1 (S1 − S2)
∥∥
F
+
∥∥(I + εST

2S2)
−1ST

2 (S1 − S2)
∥∥
F

≤
(∥∥(I + εST

1S1)
−1ST

1

∥∥
op
+
∥∥(I + εST

2S2)
−1ST

2

∥∥
op

)∥∥S1 − S2

∥∥
F

(d)

≤ 1√
ε

∥∥S1 − S2

∥∥
F
.

The equality (a) can be proved by using the singular value decomposition of Si to show that the
two matrices whose Frobenius norm is computed define the same bilinear form. To verify (b) add
and subtract I from the middle term. For (c) add and subtract ST

1S2 from the middle term in the
left-hand side of the inequality and use the fact that I + εST

i Si ⪰ I. Finally, for (d) we use the
elementary inequality x/(1 + εx2) ≤ ε−1/2/2.

Recall that, by [AGZ09, Lemma 2.3.1], for any L-Lipschitz function f : R → R, N−1
∑N

i=1 f(λi(B
ε))

is
√
2/N ·L Lipschitz function of Bε. Therefore, by the above and Gaussian concentration, for any

such function, any u ≥ 0, and any (a, b) ∈ [0, a0]× [0, b0]

P
(∣∣∣F(Bε)− E

{
F(Bε)

}∣∣∣ ≥ u
)
≤ 2 exp

(
− εN2u2

C(a0, b0)L2

)
, (205)

F(Bε) :=
1

N

N∑
i=1

f(λi(B
ε)) , (206)

where we can take C(a0, b0) = C0(a
2
0 + b20) for a suitable numerical constant C0 > 0.

We next take

f(x) =


0 if −z∗ + t ≤ x,
(2/t)(−x− z∗ + t) if −z∗ + t/2 < x < −z∗ + t,
1 if x ≤ −z∗ + t/2.

(207)

We have

1

N

N∑
i=1

f(λi(B
ε)) ≥ 1

N

N∑
i=1

f(λi(B
0))− 2

t
· 1

N

N∑
i=1

|λi(B0)− λi(B
ε)| (208)

(a)

≥ 1

N

N∑
i=1

1
{
λi(B

0) ≤ −z∗ + t/2
}

− 2b0

t
√
N

∥B0 −Bε∥F (209)

(b)

≥ νmin(t/3; a0, b0)−
2b0

t
√
N

∥∥ε(STS)2(I + εSTS)−1
∥∥
F

(210)

≥ νmin(t/3; a0, b0)−
2b0
t
ε∥S∥4op . (211)
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Here in (a) we used Wielandt-Hoffman and (b) holds eventually almost surely, by part 5 of Lemma
F.1. Recall that ∥S∥op ≤ 2 +

√
α ≤ 3 with probability 1 − exp(−cN). Hence, taking ε =

tνmin(t/3; a0, b0)/(4 · 34b0), we get that, with high probability

1

N

N∑
i=1

f(λi(B
ε)) ≥ 1

2
νmin(t/3; a0, b0) . (212)

Since f is 2/t Lipschitz, Eq. (205) implies

P

(
1

N

N∑
i=1

f(λi(B
ε)) ≤ 1

2
νmin(t/3; a0, b0)− u

)
≤ 2 exp

(
− εN2t2u2

C(a0, b0)

)
(213)

≤ 2 exp
(
− N2t4νmin(t/3; a0, b0)u

2

C ′(a0, b0)

)
, (214)

and the proof of the claim follows by noting that

P (λmin(B
ε) ≥ −z∗ + t) ≤ P

(
1

N

N∑
i=1

f(λi(B
ε)) ≤ 0

)
. (215)

Lemma F.3. Assume we let n, d→ ∞ with n/d→ α ∈ (0, 1]. Recall the definition of Hamiltonian
H(x) := ∥F (x)∥22/2, and that Tx denotes the tangent space to the sphere of radius ∥x∥2 at x.

Let λ(x) := λmin(∇2H(x)|T,x) and define

z0(x) := −z∗(α;
√

2αξ′′(∥x∥2)H(x)/n, ξ′(∥x∥2)) . (216)

Then, for any ε > 0 there exists a constant C(ε) > 0 such that for large enough n and d,

P
(
∀x ∈ Bd(1) : λ(x) ≤ d(z0(x) + ε)

)
≥ 1− C(ε) e−d/C(ε) . (217)

Proof. Lemmas 4.1 and F.2 imply that for any ε, C0 > 0, there exists a constant C(C0, ε) > 0
(depending on ξ as well) such that, for large n, d for any x ∈ Bd(1)

P
(
λ(x) ≥ d(z0(x) + ε);H(x) ≤ C0d

)
≤ C(C0, ε) e

−2d2/C(C0,ε) . (218)

Applying Proposition A.1, Lemma A.6, and Weyl’s inequality, we can work on the event

G :=
{

max
x∈Bd(1)

H(x) ≤ C0d, max
x∈Bd(1)

∥DF |T,x∥op ≤ C0

√
d, Lip(H;Bd(0; 1)) ≤ C0 d,

Lip(DF ;Bd(1)) ≤ C0 d, Lip(λ;B
d(1)) ≤ C0 d

}
,

for C0 a sufficiently large constant (dependent on ξ). Indeed P(G) ≥ 1 − C1e
−d/C1 for a certain

constant C1 and large n, d. Further, on the same event Lip(z0;B
d(1)) ≤ C0 (eventually enlarging

C0).
Let Nd(δd) be a δd-net in Bd(1), with δd = 1/d. Then for large n, d,

P
(
∃x ∈ Bd(1) : λ(x) ≥d(z0(x) + ε);G

)
≤ P

(
∃x ∈ Nd(δd) : λ(x) ≥ d(z0(x) + ε)− C ′

0dδd;G
)

≤ |Nd(δd)| max
x∈Nd(δd)

P
(
λ(x) ≥ d(z0(x) + ε/2); H(x) ≤ C0d

)
≤ exp

(
C1d log d−

d2

C(C0, ε/2)

)
,

which proves the desired claim.
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F.2 Proof of Theorem 4

Recall the definition of z0(x) in Lemma F.3 and define the event E(ε) by

E(ε) :=
{
∀x ∈ Bd(1) : λmin(∇2H(x)|T,x) ≤ d(z0(x) + ε); (219)

Lip(H;Bd(1)) ≤ C0d; Lip(∇2H;Bd(1)) ≤ C0d
}
.

By Lemma A.6 and Lemma F.3 we can choose C sufficiently large, so that, for any ε > 0, P(E(ε)) ≥
1− C(ε) exp(−d/C(ε)) for large n, d.

Consider the sequence xk produced by the Hessian descent algorithm. By Taylor’s theorem,
on the event Lip(∇2H;Bd(1)) ≤ C0d, we have

H(xk+1) ≤ H(xk)− sk
√
δ ⟨v(xk),∇H(xk)⟩+ 1

2
δ ⟨v(xk),∇2H(xk)v(xk)⟩+ C0d δ

3/2

≤ H(xk) +
1

2
δλmin(∇2H(xk)|T,xk) + 2C0dδ

3/2 ,

(220)

where in the second line we used the definition of sk and v(xk). We will hereafter work on the event
E(ε), with ε = δ3/2. We thus have that

H(xk+1) ≤ H(xk)− 1

2
δdz0(xk) + 3C0dδ

3/2 . (221)

For t = kδ ∈ [0, 1] with integer k define U(t) := H(xt/δ)/n, and on (kδ, (k + 1)δ) define U(t) by
linearly interpolating the two end values. Defining [t]δ := δ⌊/δ⌋ and

Φ(u, t) := − 1

2α
z∗
(
α;
√
2αξ′′(t)u, ξ′(t)

)
, (222)

we can rewrite Eq. (220) as (excluding the points t = kδ)

dU

dt
(t) ≤ Φ

(
U([t]δ), [t]δ

)
+ C ′δ3/2 , (223)

U(0) ≤ 1

2
ξ(0) + δ . (224)

where the bound in the last line holds wth high probability since H(0)/n concentrates around
its expectation. Since u 7→ Φ(u, t) is a Lipschitz function of u (a fact that follows from Weyl’s
inequality), for all δ small enough, U((k + 1)δ) is a monotone increasing function of U(kδ), and
hence it follows that U(t) ≤ U∗(t) where

dU∗
dt

(t) = Φ
(
U∗([t]δ), [t]δ

)
+ C ′δ3/2 , (225)

U∗(0) =
1

2
ξ(0) + δ . (226)

Finally, letting u(t) = u(t;α, ξ) denote the solution of the ODE (35), and using the fact that
t 7→ Φ(u, t) is a Lipschitz function of t, we obtain |U∗(t)− u(t)| ≤ C ′′√δ by standard discretization
arguments for ODEs.
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G Analysis of the two-phase algorithm

G.1 Proof of Theorem 5

The proof is based on the following state evolution characterization of the AMP iteration of Eqs. (48),
(49).

Proposition G.1. Consider the AMP iteration of Eqs. (48), (49) with initialization given by
Eq. (50), and Onsager coefficients in Eqs. (51) to (53). Let (Mℓ : ℓ ≥ 0), (Hℓ : ℓ ≥ 0) be two
independent centered Gaussian processes with covariances QM = (QM

k,l)k,l≥0, QH = (QH
k,l)k,l≥0 de-

fined recursively via

QH
k+1,l+1 = ξ(QM

k,l) , QM
k+1,l+1 = γ2ξ′(QM

k,l)Q
H
k,l . (227)

with initialization QM
0,ℓ = QH

0,ℓ = 0 for all ℓ ≥ 0.
Then, for any L, and any locally Lipschitz function ψ : RL+1 → R, with |ψ(x)| ≤ C(1+ ∥x∥22),

we have

p-lim
n,d→∞

1

n

n∑
i=1

ψ(
√
nh0i , . . . ,

√
nhLi ) = E

{
ψ(H0, . . . ,HL)

}
, (228)

p-lim
n,d→∞

1

d

d∑
i=1

ψ(
√
dm0

i , . . . ,
√
dmL

i ) = E
{
ψ(M0, . . . ,ML)

}
. (229)

We next use this result to prove the theorem.

Proof of Theorem 5. By construction, for any k ≥ 0, we have that QM
ℓ,ℓ+k = QH

ℓ,ℓ+k = qℓ, where the
sequence (qℓ)ℓ≥0 satisfies

qℓ+1 = γ2 ξ(qℓ)ξ
′(qℓ) , q0 = 0 . (230)

Fixed points of this map are solutions of the equation

1

γ2
= V (q) , V (q) :=

ξ(q)ξ′(q)

q
. (231)

Notice that q 7→ V (q) is a strictly convex function on (0, qmax), where qmax ∈ [1,∞] is the maximum
radius of convergence of ξ (because ξ(q) is real analytic with non-negative coefficients, and hence
so is (ξ(q)ξ′(q)− ξ(0)ξ′(0))/q). Further, since ξ(0), ξ′(0) > 0, we have V (q) ↑ ∞ as q ↓ 0. Therefore
V (q) has a unique minimum at qRS. Further ξ(q) ↑ ∞ as q ↑ ∞ unless ξ is linear, in which case
V (q) is monotone decreasing. Therefore qRS < ∞ if and only if ξ is nonlinear. In the nonlinear
case, this implies that the fixed point equation (231) has two solutions q1(γ) < qRS < q2(γ) if
γ2 < 1/V∗ := 1/minq∈(0,qmax) V (q) and no solution for γ2 > 1/V∗. In the linear case, we have only
one solution q1(γ) < qRS = ∞.

Since q1(γ) decreases continuously from qRS to 0 as γ decreases from 1/
√
V∗ to 0, for any

q ∈ (0, qRS) we can select γ = γ0(q, ξ), where

γ0(q, ξ) := −
√

q

ξ(q)ξ′(q)
(232)

and this yields that the smallest fixed point of (230) coincides with q. Further, V ′(q) < 0 (again
by strict convexity). Letting f(r) := γ2 ξ(r)ξ′(r), this implies f ′(q) < 1 strictly. Since f is convex
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non-decreasing, we conclude that there exists a constant C > 0 (depending on ξ, q) such that, if
γ = γ0(q, ξ), then

q − C e−ℓ/C ≤ qℓ ≤ q ∀ℓ . (233)

Notice that this implies that, for all ℓ, k ≥ 0 (the constant C will change from line to line):∣∣QM
ℓ,ℓ+k − q

∣∣ ≤ Ce−ℓ/C ,
∣∣QH

ℓ,ℓ+k − ξ(q)
∣∣ ≤ Ce−ℓ/C . (234)

By Proposition G.1, this implies that, for all ℓ, k ≥ 0

p-lim
n,d→∞

∣∣∥mℓ∥22 − q
∣∣ ≤ Ce−ℓ/C p-lim

n,d→∞

∥∥mℓ −mℓ+k
∥∥2
2
≤ Ce−ℓ/C , (235)

p-lim
n,d→∞

∣∣∥hℓ∥22 − ξ(q)
∣∣ ≤ Ce−ℓ/C p-lim

n,d→∞

∥∥hℓ − hℓ+k
∣∣2
2
≤ Ce−ℓ/C , (236)

and therefore,

p-lim
n,d→∞

∣∣∣Bℓ −
1√
α
ξ′(q)

∣∣∣ ≤ Ce−ℓ/C , (237)

p-lim
n,d→∞

∣∣Cℓ −
√
αξ′(q)

∣∣ ≤ Ce−ℓ/C , (238)

p-lim
n,d→∞

∣∣Dℓ − ξ(q)ξ′(q)
∣∣ ≤ Ce−ℓ/C . (239)

Therefore, using Eq. (48), we get

p-lim
n,d→∞

1

n
∥F (mℓ)∥2 = p-lim

n,d→∞
∥hℓ+1 + γBℓh

ℓ−1∥2

= p-lim
n,d→∞

(
1 + γ0(q, ξ)Bℓ

)2 · ∥hℓ∥22 +O(e−ℓ/C)

=
(
1 + γ0(q, ξ)

1√
α
ξ′(q)

)2
ξ(q) +O(e−ℓ/C)

=
(√

ξ(q)−
√

1

α
qξ′(q)

)2
+O(e−ℓ/C) .

The claim of the theorem now follows by fixing

γ = γ∗(q, α, ξ) = γ0(q ∧ q0(α), ξ) . (240)

While not needed for the proof of the theorem we also note that our analysis implies that

lim
n,d→∞

1

n

∥∥PT,mL∇H(mL)
∥∥
2
≤ C e−L/C . (241)

(Recall that the typical scale of ∥∇H(m)∥2 at a non-random point m is Θ(n).) To prove this claim,
recall that ∇H(mℓ) = DF (mℓ)TF (mℓ) and therefore, using Eqs. (48) and (49)

1

n
∇H(mℓ) =

1√
n
DF (mℓ)T

(
hℓ+1 + γBℓh

ℓ−1
)

=
1√
n
(1 + γBℓ)DF (mℓ)Thℓ + eℓ1
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=
1

γ
√
α
(1 + γBℓ)

(
mℓ+1 + γCℓm

ℓ−1 + γ2Dℓm
ℓ−1
)
+ eℓ1

=
1

γ
√
α
(1 + γBℓ)

(
1 + γCℓ + γ2Dℓ

)
mℓ + eℓ1 + eℓ2 ,

where, by Eqs. (235), (236), we have

p-lim
n,d→∞

{
∥eℓ1∥2 + ∥eℓ2∥2

}
≤ C exp(−ℓ/C) .

This immediately implies Eq. (241).

G.2 Proof of Theorem 6

Theorem Theorem 6 follows from Theorem 5 using the same exactly the same argument as for
Theorem 4, with the following adaptations:

1. The initial value of the energy for the second phase is given byH(mL)/n = uRS(q, α, ξ)+oP (1).

2. The Hessian descent algorithm takes palce in the (d − 1)-dimensional space VL := {x ∈ Rd :
⟨x,mL⟩ = 0}.

3. Within this subspace, we attempt to solve an optimization problem that has the same form
as the original one, namely

minimize ∥F̃ (x;mL)∥22 , F̃ (x;mL) := F (mL + x) , (242)

subj. to x ∈ VL, ∥x∥22 = 1− ∥mL∥22 (243)

Of course, the reduction from dimension d to d−1 is immaterial, and the change in the radius
constraint does not affect the argument given for Theorem 5.

4. For a non-random v ∈ Bd(1), the random function F̃ ( · ;v) restricted to v⊥ is again a centered
Gaussian process with covariance

E
{
F̃i(x1)F̃j(x1;v)

}
= δij ξ

(
∥v∥22 + ⟨x1,x2⟩

)
. (244)

Hence, by Theorem 4, Hessian descent on the subspace v⊥ with respect to F̃ outputs x∗ ∈ Sd−1

with energy ∥F (x∗)∥2/(2n) ≤ u(t∗;v)+Cδ+oP (1), where t∗ := 1−∥v∥22, where u( · ;v) solves

du

dt
(t;v) = − 1

2α
z∗
(
α;
√
2αu(t)ξ′′(∥v∥2 + t), ξ′(∥v∥2 + t)

)
, u(0) =

1

2n
∥F (v)∥2 . (245)

5. The proof of Theorem 4 only uses a uniform upper bound over the minimum eigenvalue of
Hessian of the energy function, and therefore the last claim actually applies uniformly over
v ∈ Bd(1). As a consequence it also applies to the random point mL.

G.3 Proof of Proposition G.1

This statement is a direct consequence of [EAMS21, Theorem 6]. We begin by restating the latter
in a form that is adapted to our use here. For each k ≥ 1, let W (k) ∈ (RN )⊗k be an independent,
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Gaussian symmetric tensor. More precisely, if (G(k))k≥0 is a collection of tensors with i.i.d. N(0, 1)
entries, then

W (k) :=
1

k!

√
k

Nk−1

∑
π∈Sk

G(k)
π , (246)

where the sum is over permutations of k objects, and G
(k)
π is obtained by permuting the indices of

G(k). Let ν(t) =
∑

k≥1 c
2
kt

k for some coefficients ck, D ≥ 1 be an integer, Φℓ : RD × R → RD be
Lipschitz functions, and denote by DΦℓ(z; v) ∈ RD×D the Jacobian of Φℓ with respect to its first
argument (which exists in weak sense).

Define the sequence of random variables V , (Zℓ)ℓ≥0 by letting (Z0, V ) ∼ p0 be an arbitrary
random vector taking values in RD ×R, and (Zℓ)ℓ≥1 be a centered Gaussian process, again with Zℓ

again taking values in RD and covariance Qjk := E[ZjZ
T
k ] determined recursively via

Qj+1,k+1 = ν
(
E
{
Φj(Zj ;V )Φk(Zk;V )T

})
. (247)

(Throughout this section we will not use boldface for D-dimensional vectors.)
For any dimension N ∈ N, consider iterates zℓ ∈ RN×D given by

zℓ+1 =

∞∑
k=1

ckW
(k){Φℓ(z

ℓ;v)} − Φℓ−1(z
ℓ−1;v)Bℓ , (248)

Bℓ := ν ′
(
E[Φℓ(Zℓ;V )Φℓ−1(Zℓ−1;V )T]

)
⊙ E[DΦℓ(Zℓ;V )] , (249)

where v ∈ RN and z0 ∈ RN×D are non-random, and ν ′ is applied entrywise, and ⊙ denotes entrywise
multiplication. Further Φℓ(z

ℓ;v) ∈ RN×D denotes the matrix whose i-th row is Φℓ(z
ℓ;v)i =

Φℓ(z
ℓ
i ; vi). Further, for x ∈ RN×D, x = (x1, . . . , xN )T, xi ∈ RD, we denote by W (k){x} ∈ RN×D

the matrix whose i-th row is

W (k){x}i =
N∑

j1,...,jk−1=1

W
(k)
ij1...jk−1

xj1 ⊙ · · · ⊙ xjk−1
. (250)

With these definitions, we have the following.

Proposition G.2 (Theorem 6 in [EAMS21]). Assume that the empirical distribution of v, z0,
namely p̂v,z0 := N−1

∑
i≤N δvi,z0i

converges in W2 distance to p0. Then, for any L ≥ 0 and any
function ψ : RD(L+1)+1 → R that is locally Lipschitz and at most quadratic growth (i.e. |ψ(x)| ≤
C(1 + ∥x∥22)), we have

p-lim
N→∞

1

N

N∑
i=1

ψ(z0
i , . . . ,z

L
i ; vi) = E

{
ψ(Z0, . . . , ZL;V )

}
(251)

The same holds if Bℓ is replaced by its empirical version

B̂ℓ := ν ′
( 1

N

N∑
i=1

Φℓ(z
ℓ
i ; vi)Φℓ−1(z

ℓ−1
i ; vi)

T]
)
⊙ 1

N

N∑
i=1

DΦℓ(z
ℓ
i ; vi) . (252)

Proof. As mentioned, this is an adaptation from [EAMS21, Theorem 6], with three points of differ-
ence. However, each of these points can be reduced to the version stated in [EAMS21].

48



1. In [EAMS21] it is assumed that D = 1, but memory across iterations is allowed. Namely,
iterates xℓ ∈ RN are updated via

xℓ+1 =
∞∑
k=1

ckW
(k){fℓ(x0, . . . ,xℓ)} − fℓ−1(x

0, . . . ,xℓ)B̃ℓ , . (253)

It is clear that this case also covers the seemingly more general one with iterates zℓ ∈ RN×D

by grouping the zℓ = (xℓD,xℓD+1, · · · ,xℓD+D−1). Indeed, it covers a more general form of
the present statement in which Φℓ depends on z0, . . . ,zℓ rather than just on zℓ.

2. The statement in [EAMS21] does not allow for dependency on the vector v. However, the case
with v can be reduced to the one without v simply by encoding v as an additional column
of z0, and increasing D to D + 1. Since, as mentioned in the previous point, the result of
[EAMS21] implies the case in which both D is arbitrary, and Φℓ depends on z0, . . . , zℓ,
dependence on v can be captured.

3. Finally, [EAMS21] uses the deterministic version of coefficient Bℓ. One can show by induction
over ℓ that: (i) B̂ℓ = Bℓ + oP (1); (ii) Denoting by ẑℓ the iterates that result from using the
empirical version, we have ∥bzℓ − ẑℓ∥2 = oP (1).

Normalizations are different but equivalent to the ones of [EAMS21].

We next set N = n+ d and

zℓ =

(
xℓ

yℓ

)
, xℓ ∈ Rn×D, yℓ ∈ Rd×D . (254)

Further, we set vi = 0 for i ≤ n, vi = 1 for i > n, and write Jℓ(x) = Φℓ(x; 0), Hℓ(x) = Φℓ(x; 1), and
write W (k,q)

i;i1,...,iq ,j1,...jk−q
=W

(k)
i,i1,...,iq ,n−1+j1,...n−1+jk−q

, for q ≤ k− 1. In what follows indices denoted
by i, i1, i2, . . . run over [n], and indices denoted by j, i1, i2, . . . run over [d]. We can then rewrite
the iteration as

xℓ+1
i =

∞∑
k=1

ck

k−1∑
q=0

(
k − 1

q

) ∑
i1...iq≤n

∑
jq+1...jk−1≤n

W
(k,q)
i;i1,...,iq ,j1,...jk−1−q

· (255)

· Jℓ(xℓi1)⊙ · · · ⊙ Jℓ(x
ℓ
iq)⊙Hℓ(y

ℓ
j1)⊙ · · · ⊙Hℓ(y

ℓ
jk−q

)− BT
ℓ Fℓ−1(x

ℓ−1
i ) ,

yℓ+1
i =

∞∑
k=1

ck

k−1∑
q=0

(
k − 1

q

) ∑
i1...iq≤n

∑
jq+1...jk−1≤n

W
(k,q)
i1;i2,...,iq ,j,j1...jk−1−q

· (256)

· Jℓ(xℓi1)⊙ · · · ⊙ Jℓ(x
ℓ
iq)⊙Hℓ(yj1)⊙ · · · ⊙Hℓ(y

ℓ
jk−q

)− BT
ℓ Hℓ−1(y

ℓ−1
j ) .

We next set D = 3 and

Jℓ(x = (x1, x2, x3)) =
(
0, f ℓ(x1), 0

)
, (257)

Hℓ(y = (y1, y2, y3)) =
(
hℓ(y2 − y3), gℓ(y2 − y3), gℓ(y2 − y3)

)
, (258)

Writing x̂ℓ for the first column of xℓ and ŷℓ, ŷℓ
0 for the second and third columns of yℓ. In terms

of these variables, the AMP iteration reads

x̂ℓ+1
i =

∞∑
k=1

ck
∑

j1,...,jk−1>n

W
(k,0)
i;i1...jk−1

hℓ(ŷ
ℓ
j1 − ŷℓ0,j1) · · ·hℓ(ŷ

ℓ
jk−1

− ŷℓ0,jk−1
)− b1,ℓf ℓ−1(x̂

ℓ−1
i ) , (259)
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ŷℓ+1
j =

∞∑
k=1

ck

k−1∑
q=0

(
k − 1

q

) ∑
i1...iq≤n

∑
jq+1...jk−1≤n

W
(k,q)
i1;i2,...,iq ,j,j1...jk−1−q

· (260)

· f ℓ(x̂ℓi1) · · · f ℓ(x̂
ℓ
iq)gℓ(ŷ

ℓ
j1 − ŷℓ0,j1) · · · gℓ(ŷ

ℓ
jk−q

− ŷℓ0,jk−q
)

− b2,ℓgℓ−1(ŷ
ℓ−1
j − ŷℓ−1

0,j )− b3,ℓhℓ−1(ŷ
ℓ−1
j − ŷℓ−1

0,j ) ,

ŷℓ+1
0,j =

∞∑
k=1

ck
∑

j1,...,jk−1≤d

W
(k,0)
j1;j,j2,...,jk−1

gℓ(ŷ
ℓ
j1 − ŷℓ0,j1) · · · gℓ(ŷ

ℓ
jk−1

− ŷℓ0,jk−1
) (261)

− b4,ℓgℓ−1(ŷ
ℓ−1
j − ŷℓ−1

0,j )− b5,ℓhℓ−1(ŷ
ℓ−1
j − ŷℓ−1

0,j ) ,

for suitable sequence of constants b1,ℓ, . . . , b5,ℓ. It is straightforward (albeit tedious) to write expres-
sions for these constants, as well as the state evolution characterization that follows from Proposition
G.2.

We next introduce a small parameter ε, and set f ℓ(x) = εfℓ(x/ε), gℓ(x) = gℓ(x/ε) hℓ(x) =
hℓ(x/ε). By defining xℓi := (ŷℓj − ŷℓ0,j)/ε, and taking the difference of Eqs. (260) and (261), we get

x̂ℓ+1
i =

∞∑
k=1

ck
∑

j1,...,jk−1≤d

W
(k,0)
i;j1...jk−1

hℓ(x
ℓ
j1) · · ·hℓ(x

ℓ
jk−1

)− b∗,ℓfℓ−1(x̂
ℓ−1
i ) +O(ε) , (262)

xℓ+1
j =

∞∑
k=1

ck(k − 1)
∑
i1≤n

∑
j1...jk−2≤d

W
(k,0)
i1;j,j1...,jk−2

fℓ(x̂
ℓ
i1)gℓ(x

ℓ
j1) · · · gℓ(x

ℓ
jk−2

)

− a1,ℓgℓ−1(x
ℓ−1
j )− a2,ℓhℓ−1(x

ℓ−1
j ) +O(ε) . (263)

The order ε term can be controlled uniformly over n, d on a high probability event (controlling the
operator norms of tensors W (k)), hence allowing to derive a state evolution characterization of the
recursion in which O(ε) terms are dropped.

We finally define

Fi(x) :=

∞∑
k=1

ck
∑

j1,...,jk−1≤d

W
(k,0)
i;j1...jk−1

xℓj1 · · ·x
ℓ
jk−1

, (264)

and note that the above recursion (dropping O(ε) terms) can be rewritten as

x̂ℓ+1 = F (hℓ(x
ℓ))− b∗,ℓfℓ−1(x̂

ℓ−1) , (265)

xℓ+1 = DF (xℓ)Tfℓ(x̂
ℓ)− a1,ℓgℓ−1(x

ℓ−1)− a2,ℓhℓ−1(x
ℓ−1) . (266)

This is exactly the form of the algorithm introduced in the main text, (48), (49), where functions
fℓ, hℓ, gℓ are all linear.

The proof of Proposition G.1 follows from keeping track of the coefficients in the Onsager terms
(the memory terms in the AMP recursions), as well as of the state evolution recursion, along the
chain of reductions just defined.
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